Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 241(2): 567-577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985402

RESUMO

According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.


Assuntos
RNA Ribossômico , RNA de Transferência , RNA Ribossômico/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA
2.
J Exp Bot ; 75(1): 180-203, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611210

RESUMO

Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/fisiologia , Hordeum/metabolismo , Giberelinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Hormônios/metabolismo , Ciclo Celular
3.
Mol Plant Pathol ; 24(6): 570-587, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917011

RESUMO

The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.


Assuntos
Ascomicetos , Hordeum , RNA Fúngico/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Hordeum/microbiologia , RNA de Transferência , Interferência de RNA , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
4.
Mol Ecol ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862075

RESUMO

The powdery mildew fungi (Erysiphaceae) are globally distributed plant pathogens with a range of more than 10,000 plant hosts. In this review, we discuss the long- and short-term evolution of these obligate biotrophic fungi and outline their diversity with respect to morphology, lifestyle, and host range. We highlight their remarkable ability to rapidly overcome plant immunity, evolve fungicide resistance, and broaden their host range, for example, through adaptation and hybridization. Recent advances in genomics and proteomics, particularly in cereal powdery mildews (genus Blumeria), provided first insights into mechanisms of genomic adaptation in these fungi. Transposable elements play key roles in shaping their genomes, where even close relatives exhibit diversified patterns of recent and ongoing transposon activity. These transposons are ubiquitously distributed in the powdery mildew genomes, resulting in a highly adaptive genome architecture lacking obvious regions of conserved gene space. Transposons can also be neofunctionalized to encode novel virulence factors, particularly candidate secreted effector proteins, which may undermine the plant immune system. In cereals like barley and wheat, some of these effectors are recognized by plant immune receptors encoded by resistance genes with numerous allelic variants. These effectors determine incompatibility ("avirulence") and evolve rapidly through sequence diversification and copy number variation. Altogether, powdery mildew fungi possess plastic genomes that enable their fast evolutionary adaptation towards overcoming plant immunity, host barriers, and chemical stress such as fungicides, foreshadowing future outbreaks, host range shifts and expansions as well as potential pandemics by these pathogens.

5.
Front Microbiol ; 13: 809940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283825

RESUMO

Plant microbiomes and immune responses have coevolved through history, and this applies just as much to the phyllosphere microbiome and defense phytohormone signaling. When in homeostasis, the phyllosphere microbiome confers benefits to its host. However, the phyllosphere is also dynamic and subject to stochastic events that can modulate community assembly. Investigations into the impact of defense phytohormone signaling on the microbiome have so far been limited to culture-dependent studies; or focused on the rhizosphere. In this study, the impact of the foliar phytohormone salicylic acid (SA) on the structure and composition of the phyllosphere microbiome was investigated. 16S rRNA amplicons were sequenced from aerial tissues of two Arabidopsis mutants that exhibit elevated SA signaling through different mechanisms. SA signaling was shown to increase community diversity and to result in the colonization of rare, satellite taxa in the phyllosphere. However, a stable core community remained in high abundance. Therefore, we propose that SA signaling acts as a source of intermediate disturbance in the phyllosphere. Predictive metagenomics revealed that the SA-mediated microbiome was enriched for antibiotic biosynthesis and the degradation of a diverse range of xenobiotics. Core taxa were predicted to be more motile, biofilm-forming and were enriched for traits associated with microbe-microbe communication; offering potential mechanistic explanation of their success despite SA-mediated phyllospheric disturbance.

6.
Nat Plants ; 8(3): 200-201, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210560

Assuntos
Pão
7.
Eur J Med Chem ; 229: 114002, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34823899

RESUMO

Compounds targeting the inflammasome-caspase-1 pathway could be of use for the treatment of inflammation and inflammatory diseases. Previous caspase-1 inhibitors were in great majority covalent inhibitors and failed in clinical trials. Using a mixed modelling, computational screening, synthesis and in vitro testing approach, we identified a novel class of non-covalent caspase-1 non cytotoxic inhibitors which are able to inhibit IL-1ß release in activated macrophages in the low µM range, in line with the best activities observed for the known covalent inhibitors. Our compounds could form the basis of further optimization towards potent drugs for the treatment of inflammation and inflammatory disorders including also dysregulated inflammation in Covid 19.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Doenças Autoimunes/tratamento farmacológico , Caspase 1/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Serpinas/síntese química , Serpinas/farmacologia , Tetrazóis/síntese química , Tetrazóis/uso terapêutico , Proteínas Virais/síntese química , Proteínas Virais/farmacologia , COVID-19 , Divisão Celular/efeitos dos fármacos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Tetrazóis/farmacologia , Células U937
8.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199659

RESUMO

Herein we describe a combined experimental and in silico study of the interaction of a series of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives (PBTs) with parallel G-quadruplex (GQ) DNA aimed at correlating their previously reported anticancer activities and the stabilizing effects observed by us on c-myc oncogene promoter GQ structure. Circular dichroism (CD) melting experiments were performed to characterize the effect of the studied PBTs on the GQ thermal stability. CD measurements indicate that two out of the eight compounds under investigation induced a slight stabilizing effect (2-4 °C) on GQ depending on the nature and position of the substituents. Molecular docking results allowed us to verify the modes of interaction of the ligands with the GQ and estimate the binding affinities. The highest binding affinity was observed for ligands with the experimental melting temperatures (Tms). However, both stabilizing and destabilizing ligands showed similar scores, whilst Molecular Dynamics (MD) simulations, performed across a wide range of temperatures on the GQ in water solution, either unliganded or complexed with two model PBT ligands with the opposite effect on the Tms, consistently confirmed their stabilizing or destabilizing ability ascertained by CD. Clues about a relation between the reported anticancer activity of some PBTs and their ability to stabilize the GQ structure of c-myc emerged from our study. Furthermore, Molecular Dynamics simulations at high temperatures are herein proposed for the first time as a means to verify the stabilizing or destabilizing effect of ligands on the GQ, also disclosing predictive potential in GQ-targeting drug discovery.


Assuntos
DNA/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/química , Telômero/química , Sítios de Ligação/efeitos dos fármacos , Dicroísmo Circular , Simulação por Computador , DNA/química , DNA/ultraestrutura , Humanos , Ligantes , Simulação de Dinâmica Molecular , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/ultraestrutura , Telômero/efeitos dos fármacos , Telômero/genética
9.
Plant Physiol ; 183(1): 385-398, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32123042

RESUMO

Jasmonate-induced protein 60 (JIP60) is a ribosome-inactivating protein (RIP) from barley (Hordeum vulgare) and is involved in the plant immune response dependent on jasmonate hormones. Here, we demonstrate in Nicotiana benthamiana that transient expression of the N-terminal domain of JIP60, from which the inhibitor domain (amino acids 163-185) is removed, initiates cell death, leading to extensive necrosis of leaf tissues. We used structure prediction of JIP60 to identify potential catalytic amino acids in the active site and tested these by mutagenesis and in planta assays of necrosis induction by expression in N. benthamiana, as well as through an in vitro translation-inactivation assay. We found that Tyr 96, Glu 201, Arg 204, and Trp 234 in the presumptive active site of JIP60 are conserved in 815 plant RIPs in the Pfam database that were identified by HUMMR as containing a RIP domain. When these amino acid residues are individually mutated, the necrosis-inducing activity is completely abolished. We therefore propose that the role of these amino acids in JIP60 activity is to depurinate adenosine in ribosomes. This study provides insight into the catalytic mechanism of JIP60.


Assuntos
Hordeum/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ribossomos/metabolismo , Domínio Catalítico
10.
PLoS Pathog ; 15(3): e1007620, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856238

RESUMO

The biotrophic fungal pathogen Blumeria graminis causes the powdery mildew disease of cereals and grasses. We present the first crystal structure of a B. graminis effector of pathogenicity (CSEP0064/BEC1054), demonstrating it has a ribonuclease (RNase)-like fold. This effector is part of a group of RNase-like proteins (termed RALPHs) which comprise the largest set of secreted effector candidates within the B. graminis genomes. Their exceptional abundance suggests they play crucial functions during pathogenesis. We show that transgenic expression of RALPH CSEP0064/BEC1054 increases susceptibility to infection in both monocotyledonous and dicotyledonous plants. CSEP0064/BEC1054 interacts in planta with the pathogenesis-related protein PR10. The effector protein associates with total RNA and weakly with DNA. Methyl jasmonate (MeJA) levels modulate susceptibility to aniline-induced host RNA fragmentation. In planta expression of CSEP0064/BEC1054 reduces the formation of this RNA fragment. We propose CSEP0064/BEC1054 is a pseudoenzyme that binds to host ribosomes, thereby inhibiting the action of plant ribosome-inactivating proteins (RIPs) that would otherwise lead to host cell death, an unviable interaction and demise of the fungus.


Assuntos
Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal/imunologia , Plantas/imunologia , RNA de Plantas/metabolismo , RNA Ribossômico/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Conformação Proteica , RNA de Plantas/genética , RNA Ribossômico/genética , Homologia de Sequência
11.
Anticancer Agents Med Chem ; 19(4): 567-578, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30706794

RESUMO

BACKGROUND: In a previous study, we synthesised a new spiroketal derivative, inspired to natural products, that has shown high antiproliferative activity, potent telomerase inhibition and proapoptotic activity on several human cell lines. OBJECTIVE: This work focused on the study of in vivo antitumor effect of this synthetic spiroketal on a murine melanoma model. In order to shed additional light on the origin of the antitumor effect, in vitro studies were performed. METHODS: Spiroketal was administered to B16F10 melanoma mice at a dose of 5 mg/Kg body weight via intraperitoneum at alternate days for 15 days. Tumor volume measures were made every 2 days starting after 12 days from cells injection. The effects of the spiroketal on tumor growth inhibition, apoptosis induction, and cell cycle modification were investigated in vitro on B16 cells. HIF1α gene expression, the inhibition of cells migration and the changes induced in cytoskeleton conformation were evaluated. RESULTS: Spiroketal displayed proapoptotic activity and high antitumor activity in B16 cells with nanomolar IC50. Moreover it has shown to inhibit cell migration, to strongly reduce the HIF1α expression and to induce strongly deterioration of cytoskeleton structure. A potent dose-dependent antitumor efficacy in syngenic B16/C57BL/6J murine model of melanoma was observed with the suppression of tumor growth by an average of 90% at a dose of 5 mg/kg. CONCLUSION: The synthesized spiroketal shows high antitumor activity in the B16 cells in vitro at nM concentration and a dose-dependent antitumor efficacy in syngenic B16/C57BL/6J mice. The results suggest that this natural product inspired spiroketal may have a potential application in melanoma therapy.


Assuntos
Antineoplásicos/farmacologia , Furanos/farmacologia , Melanoma Experimental/patologia , Compostos de Espiro/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
12.
Microbiologyopen ; 8(5): e00730, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30311441

RESUMO

Transformation of baker's yeast (Saccharomyces cerevisiae) plays a key role in several experimental techniques, yet the molecular mechanisms underpinning transformation are still unclear. The addition of amino acids to the growth and transformation medium increases transformation efficiency. Here, we show that target of rapamycin complex 1 (TORC1) activated by amino acids enhances transformation via ubiquitin-mediated endocytosis. We created mutants of the TORC1 pathway, alpha-arrestins, and eisosome-related genes. Our results demonstrate that the TORC1-Npr1-Art1/Rsp5 pathway regulates yeast transformation. Based on our previous study, activation of this pathway results in up to a 200-fold increase in transformation efficiency, or greater. Additionally, we suggest DNA may be taken up by domains at the membrane compartment of Can1 (MCC) in the plasma membrane formed by eisosomes. Yeast studies on transformation could be used as a platform to understand the mechanism of DNA uptake in mammalian systems, which is clinically relevant to optimize gene therapy.


Assuntos
Técnicas de Transferência de Genes , Genética Microbiana/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais , Transformação Genética , Aminoácidos/metabolismo , Meios de Cultura/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
13.
Bio Protoc ; 9(14): e3299, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654812

RESUMO

Blumeria graminis is a fungus that causes powdery mildews on grasses, such as barley. Investigations of this pathogen present many challenges due to its obligate biotrophic nature. This means that the fungus can only grow in the presence of a living host plant. B. graminis forms epiphytic mycelia on the plant surface and feeding organs (haustoria) inside the epidermal cells of the host plant. Therefore, it is difficult to separate the fungus from plant tissues. This protocol shows how to obtain different fungal structures from powdery mildew infected barley leaves. The epiphytic mycelia including conidia and conidiophores can be separated after immersing the infected leaves into 5% cellulose acetate dissolved in acetone, and peeling off the cellulose acetate membrane. Then, the haustoria are isolated from dissected epidermis after cellulase degradation of plant cell walls. The isolated haustoria remain intact with few plant impurities. The haustoria may be visualized by epifluorescence microscopy after staining with the chitin-specific dye WGA-Alexa Fluor 488. Finally, dissected material can be either processed immediately or kept at -80 °C for long-term storage for studies on gene expression and protein identification, for example by mass spectrometry.

14.
BMC Genomics ; 19(1): 381, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29788921

RESUMO

BACKGROUND: Powdery mildews are biotrophic pathogenic fungi infecting a number of economically important plants. The grass powdery mildew, Blumeria graminis, has become a model organism to study host specialization of obligate biotrophic fungal pathogens. We resolved the large-scale genomic architecture of B. graminis forma specialis hordei (Bgh) to explore the potential influence of its genome organization on the co-evolutionary process with its host plant, barley (Hordeum vulgare). RESULTS: The near-chromosome level assemblies of the Bgh reference isolate DH14 and one of the most diversified isolates, RACE1, enabled a comparative analysis of these haploid genomes, which are highly enriched with transposable elements (TEs). We found largely retained genome synteny and gene repertoires, yet detected copy number variation (CNV) of secretion signal peptide-containing protein-coding genes (SPs) and locally disrupted synteny blocks. Genes coding for sequence-related SPs are often locally clustered, but neither the SPs nor the TEs reside preferentially in genomic regions with unique features. Extended comparative analysis with different host-specific B. graminis formae speciales revealed the existence of a core suite of SPs, but also isolate-specific SP sets as well as congruence of SP CNV and phylogenetic relationship. We further detected evidence for a recent, lineage-specific expansion of TEs in the Bgh genome. CONCLUSIONS: The characteristics of the Bgh genome (largely retained synteny, CNV of SP genes, recently proliferated TEs and a lack of significant compartmentalization) are consistent with a "one-speed" genome that differs in its architecture and (co-)evolutionary pattern from the "two-speed" genomes reported for several other filamentous phytopathogens.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Elementos de DNA Transponíveis/genética , Genoma Fúngico/genética , Hordeum/microbiologia , Especificidade de Hospedeiro/genética , Doenças das Plantas/microbiologia , Variações do Número de Cópias de DNA , Duplicação Gênica , Perfilação da Expressão Gênica , Filogenia
16.
Curr Opin Microbiol ; 46: 26-33, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29455142

RESUMO

Cereal powdery mildews are major pathogens of cultivated monocot crops, and all are obligate biotrophic fungi that can only grow and reproduce on living hosts. This lifestyle is combined with extreme host specialization where every mildew subspecies (referred to as forma specialis) can only infect one plant species. Recently there has been much progress in our understanding of the possible roles effectors play in this complex host-pathogen interaction. Here, we review current knowledge on the origin, evolution, and mode of action of cereal mildew effectors, with a particular focus on recent advances in the identification of bona fide effectors and avirulence effector proteins from wheat and barley powdery mildews.


Assuntos
Ascomicetos/metabolismo , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ascomicetos/genética , Hordeum/metabolismo , Interações Hospedeiro-Patógeno , Triticum/metabolismo
17.
New Phytol ; 217(2): 713-725, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044534

RESUMO

Tritrophic interactions involving a biocontrol agent, a pathogen and a plant have been analyzed predominantly from the perspective of the biocontrol agent. We have conducted the first comprehensive transcriptomic analysis of all three organisms in an effort to understand the elusive properties of Pseudozyma flocculosa in the context of its biocontrol activity against Blumeria graminis f.sp. hordei as it parasitizes Hordeum vulgare. After inoculation of P. flocculosa, the tripartite interaction was monitored over time and samples collected for scanning electron microscopy and RNA sequencing. Based on our observations, P. flocculosa indirectly parasitizes barley, albeit transiently, by diverting nutrients extracted by B. graminis from barley leaves through a process involving unique effectors. This brings novel evidence that such molecules can also influence fungal-fungal interactions. Their release is synchronized with a higher expression of powdery mildew haustorial effectors, a sharp decline in the photosynthetic machinery of barley and a developmental peak in P. flocculosa. The interaction culminates with a collapse of B. graminis haustoria, thereby stopping P. flocculosa growth, as barley plants show higher metabolic activity. To conclude, our study has uncovered a complex and intricate phenomenon, described here as hyperbiotrophy, only achievable through the conjugated action of the three protagonists.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Hordeum/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ascomicetos/genética , Ascomicetos/ultraestrutura , Basidiomycota/ultraestrutura , Transporte Biológico , Celobiose/análogos & derivados , Celobiose/farmacologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicolipídeos/farmacologia , Hordeum/ultraestrutura , Modelos Biológicos , Fenótipo , Fotossíntese , Transcriptoma/genética
18.
Front Plant Sci ; 8: 192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243250
20.
Sci Rep ; 6: 35738, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27760994

RESUMO

Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per µg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening.


Assuntos
Meios de Cultura/química , Competência de Transformação por DNA/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fatores Biológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA