Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134528, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38733785

RESUMO

In the United States, dangerously high arsenic (As) levels have been found in drinking water wells in more than 25 states, potentially exposing 2.1 million people to drinking water high in As; a known carcinogen. The anticipated sea-level rise (SLR) is expected to alter soil biogeochemical and hydrological conditions, potentially impacting their ability to sequester As. In our study of coastal Wilmington, DE, an area projected to experience a 1 -meter SLR by 2100, we examined the spatial distribution, speciation, and release possibilities of As due to SLR. To understand the complex dynamics at play, we employed a comprehensive approach, including bulk and micro X-ray absorption spectroscopy measurements, hydrological pattern evaluation, and macroscopic stirred-flow experiments. Our results suggest that introducing reducing and saline conditions can increase As release in both river water and seawater inundation scenarios, most likely due to ionic competition and the dissolution of As-bearing Fe/Mn oxides. Regardless of the salinity source, the released As concentrations consistently exceeded the EPA threshold for drinking water. Our results provide valuable insights for developing appropriate remedial and management strategies for this site and numerous others facing similar environmental challenges. ENVIRONMENTAL IMPLICATION: With nearly two hundred million individuals living within coastal flood plains and with two million square kilometers of land and one trillion dollars' worth of assets lying less than 1 m above current sea level, sea-level rise (SLR) is one of the significant socio-economic threats associated with global warming. Arsenic is a prevalent contaminant in coastal areas impacted by industrial activities, many of which are susceptible to being impacted by SLR. This study examines SLR's impact on arsenic fate and speciation in a densely populated coastline in Wilmington, DE, expecting 1 meter of SLR by 2100.

2.
Sci Total Environ ; 931: 172624, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657812

RESUMO

Sea level rise (SLR) promotes saltwater intrusion (SWI) into coastal soils globally at an increasing rate, impacting phosphorus (P) dynamics and adjacent water quality. However, how SWI influences P molecular speciation and availability in coastal soils remains poorly understood. By using a space-for-time substitution strategy, we evaluated the SWI impacts on P transformation along a SWI gradient at the Rehoboth Inland Bay, which consists of five sampling locations along a transect representing different SWI degrees. Soils were analyzed at the macro- and micro-scale using X-ray absorption near edge spectroscopy (XANES) and the modified Hedley fractionation. With increasing distance from the Bay, soil salinity (29.3-0.07 mmhos cm-1), the proportion of Fe3+ to total Fe, and P concentrations decreased. The fractionation showed that recalcitrant P was dominant (86.9-89.5% of total P). With increasing SWI, labile P increased gradually, reached a plateau, and then decreased sharply. Bulk XANES spectroscopy showed that soil P was likely dominated by iron and aluminum-associated P (Fe/Al-P), regardless of the SWI degree. Hence, with increasing SWI, P increasingly accumulated in a recalcitrant pool, mainly as Fe/Al-P. µ-XANES spectroscopy revealed that calcium-associated P (Ca-P) existed in P-rich spots of the greatest SWI soil while Al-P occurred in P-rich spots of the low SWI soil, consistent with the greater HCl-P (presumably Ca-P) in the former soil. Overall, results demonstrate that SWI impacts P availability and environmental risk in coastal soils depending on the degree of SWI. These findings have important implications for understanding soil P cycling and availability in SLR-impacted coastal areas.

3.
Environ Sci Technol ; 58(9): 4155-4166, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38385246

RESUMO

Permafrost soils store ∼50% of terrestrial C, with Yedoma permafrost containing ∼25% of the total C. Permafrost is undergoing degradation due to thawing, with potentially hazardous effects on landscape stability and water resources. Complicating ongoing efforts to project the ultimate fate of deep permafrost C is the poorly constrained role of the redox environment, Fe-minerals, and its redox-active phases, which may modulate organic C-abundance, composition, and reactivity through complexation and catalytic processes. We characterized C fate, Fe fractions, and dissolved organic matter (DOM) isolates from permafrost-thaw under varying redox conditions. Under anoxic incubation conditions, 33% of the initial C was lost as gaseous species within 21 days, while under oxic conditions, 58% of C was lost. Under anoxic incubation, 42% of the total initial C was preserved in a dissolved fraction. Lignin-like compounds dominated permafrost-thaw, followed by lipid- and protein-like compounds. However, under anoxic incubation conditions, there was accumulation of lipid-like compounds and reduction in the nominal oxidation state of C over time, regardless of the compound classes. DOM dynamics may be affected by microbial activity and abiotic processes mediated by Fe-minerals related to selective DOM fractionation and/or its oxidation. Chemodiversity DOM signatures could serve as valuable proxies to track redox conditions with permafrost-thaw.


Assuntos
Pergelissolo , Ferro , Matéria Orgânica Dissolvida , Carbono , Minerais , Oxirredução , Lipídeos , Solo
4.
Sci Total Environ ; 916: 170223, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266730

RESUMO

Agriculture in highly weathered tropical soils often requires considerable application of lime and fertilizers to ensure satisfactory plant nutrient levels. The consequences of these continue long-term applications is not well understood may induce changes in soil chemical properties, the abundance, and speciation of potentially toxic trace element and as well as of micronutrients in agriculture soils. In this study, we evaluated the adsorption (at pH 5) and speciation of Zn in tropical soils (both agricultural and native vegetation) as a function of fertilization and contact time using chemical fractionation analyses and X-ray absorption spectroscopy. The soils overall had high Zn adsorption capacities (∼ 700 mg kg-1), but the agricultural soil was approximately 30 % higher than of the soil under native vegetation, and the proportion of Zn in the mobile fraction was 35 % in native vegetation and 21 % in agricultural soils. Zn speciation via linear combination analysis showed a strong relationship with soil mineralogical composition and reveled that Zn associated with organic matter decreased while Zn associated with P increased after the conversion of soils from native vegetation to highly fertilized soil. Aluminosilicate soil minerals were identified as major sinks of soil Zn, accounting for 34 % of total Zn retention regardless of soil origin and land use. Association of Zn with phosphate (i.e., hopeite) was observed in the agricultural soil samples, which might be an unexpected Zn-bearing mineral in highly weathered tropical soils and could have impacts on Zn plant nutrition.


Assuntos
Poluentes do Solo , Oligoelementos , Solo/química , Zinco/análise , Verduras , Agricultura/métodos , Oligoelementos/análise , Minerais , Poluentes do Solo/análise
5.
J Hazard Mater ; 465: 133041, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38043423

RESUMO

The solubility and transport of Cr(VI) is primarily controlled by adsorption-desorption reactions at the surfaces of soil minerals such as iron oxides. Environmental properties such as pH, ionic strength, and ion competition are expected to affect the mobility and fate of Cr(VI). Sea level rise (SLR), and consequent seawater intrusion, is creating a new biogeochemical soil environment at coastal margins, potentially impacting Cr(VI) retention at contaminated sites. We employed in-situ ATR-FTIR spectroscopy and DFT calculations to investigate at the molecular level the adsorption of Cr(VI) on the hematite surface and its desorption by sulfate, as a function of pH and ionic strength. We further used a batch experiment to assess Cr(VI) desorption at varying artificial seawater (ASW) concentrations. IR results demonstrate the complexity of Cr(VI) adsorption, showing a combination of monodentate inner-sphere complexation at high pH and dichromate outer-sphere (∼75%) at low pH. The Cr(VI)-complexes exhibited desorption induced by increasing pH values (58% of desorption) and sulfate competition (∼40% desorption). ASW desorbed ∼20% more Cr(VI), even at just 1% concentration. Our findings provide insight into Cr(VI)-adsorption complexation that controls the retention and remobilization of Cr(VI) on Fe-oxide minerals. The results point to an elevated risk of Cr(VI) mobilization in contaminated soils affected by SLR.

6.
Geochim Cosmochim Acta ; 350: 46-56, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37469621

RESUMO

Green rusts (GR) are important drivers for trace metal and nutrient cycling in suboxic environments. We investigated whether green rusts would incorporate aluminum (Al) or other elements from naturally-formed clay minerals containing easily-weatherable clay minerals (e.g. mica, interlayered clays). We isolated the clay minerals from a Matapeake silt loam soil by removal of silt and sand, organic matter, and reducible oxides to study mechanisms of interaction between Fe(II) and soil-sourced clay minerals. We conducted batch Fe(II) sorption experiments at multiple near-neutral pHs (6.5-7.5) and reaction times (2 h-365 days). Mineral transformations were characterized by selective extractions, X-ray diffraction (XRD), and Fe X-ray absorption spectroscopy (XAS) analyzed by shell-fitting and linear combination fitting (LCF) with natural and synthetic standards. Clay mineral fraction contained a mixture of quartz, kaolinite, interlayered vermiculite, mica, and chlorite with significant structural Fe (2.6% wt). Uptake of Fe(II) increased with pH and kinetics were rapid until 5 days, followed by slow continuous Fe(II) uptake. Citrate-bicarbonate desorption kinetics from Fe(II) sorbed clay released more Al and silicon (Si) compared with unreacted soil clay fraction whereas magnesium (Mg) and potassium (K) were unaffected. Citrate-bicarbonate extracted Fe contained more Fe(II) than an ideal GR with an Fe(II)/Fe(III) molar ratio of 5.50. Analysis of the Fe EXAFS by both LCF and shell fitting was best modeled as a combination of Fe(III)-clay reduction to Fe(II) and precipitation of GR and Fe(II)-Al LDH. After 7 days of Fe(II) sorption, LCF identified 55.2% total Fe in clay, 33.4% GR(Cl) and 11.4% Fe(II)-Al LDH. These results provide novel evidence of Fe(II)-Al LDHs precipitating on naturally-formed soil clay minerals as a minor phase to GR. The geochemical implications are that GRs formed in soils and sediments should be considered to have Al and Si as well as Mg substitutions affecting their structure and reactivity.

7.
Environ Pollut ; 329: 121683, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120002
9.
Sci Rep ; 13(1): 4531, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941375

RESUMO

Ferric ions can bind strongly with dissolved organic matter (DOM), including humic acids (HA), fulvic acids (FA), and protein-like substances, whereas isolation of Fe-DOM precipitates (Fe-DOMP) and their biochemical characteristics remain unclear. In this work FeCl3 was used to isolate DOM components from various sources, including river, lake, soil, cow dung, and standard tryptophan and tyrosine, through precipitation at pH 7.5-8.5. The Fe-DOMP contribute to total DOM by approximately 38.6-93.8% of FA, 76.2% of HA and 25.0-30.4% of tryptophan and tyrosine, whilst fluorescence spectra allowed to monitor/discriminate the various DOM fractions in the samples. The relative intensity of the main infrared peaks such as 3406‒3383 cm-1 (aromatic OH), 1689‒1635 cm-1 (‒COOH), 1523-1504 cm-1 (amide) and 1176-1033 cm-1 (‒S=O) show either to decline or disappear in Fe‒DOMP. These results suggest the occurrence of Fe bonds with various functional groups of DOM, indicating the formation of π-d electron bonding systems of different strengths in Fe‒DOMP. The novel method used for isolation of Fe-DOMP shows promising in opening a new frontier both at laboratory and industrial purposes. Furthermore, results obtained may provide a better understanding of metal-organic complexes involved in the regulation of the long-term stabilization/sequestration of DOM in soils and waters.

10.
Environ Pollut ; 323: 121302, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804144

RESUMO

Sea level rise (SLR) is estimated to impact 25% of the world's population along coastal areas leading to an increase in saltwater intrusion. Consequently, changes in the soil biogeochemistry of currently non-saline and/or well-drained soils due to saltwater intrusion are of major concern. Saltwater intrusion is expected to affect farmland across large broiler producer regions, where large amounts of manure containing organic arsenicals were applied over the past decades. To determine how SLR may impact the speciation and mobility of adsorbed inorganic and organic As, we used in situ real-time attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) to determine the adsorption and desorption mechanisms of As(V) and 4-aminophenylarsonic (p-ASA, a poultry feed additive) on ferrihydrite (Fh) in the presence of sulfate at varying pH. The adsorption of As(V) and p-ASA increased at lower pH, with As(V) showing IR features consistent with the formation of inner-sphere of As-Fh surface complexes, while p-ASA also formed others structures as H-bonded As-surface complexes, likely mediated by outer-sphere complexes, based on our FTIR and batch experiments data. No observable As(V) or p-ASA desorption from the Fh surface was promoted by sulfate, however sulfate adsorption on the Fh surface was remarkably larger for p-ASA than for As(V). Complimentary, we carried out batch studies of As(V) and p-ASA desorption by Fh, using artificial seawater (ASW) at varying concentrations. The 1% ASW desorbed ∼10% of initially sorbed p-ASA, while at 100% ASW desorbed ∼40%. However, <1% of As(V) was desorbed by 1% ASW solution and only ∼7.9% were desorbed at 100% ASW. The spectroscopic data support the more extensive desorption of p-ASA compared to As(V) observed in batch experiments, suggesting that organoarsenicals may be easily desorbed and, after conversion to inorganic forms, pose a risk to water supplies.


Assuntos
Ácido Arsanílico , Arseniatos , Animais , Ácido Arsanílico/química , Adsorção , Sulfatos , Elevação do Nível do Mar , Galinhas , Compostos Férricos/química , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Óxidos de Enxofre , Concentração de Íons de Hidrogênio
11.
Environ Sci Technol ; 57(1): 222-230, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534790

RESUMO

Historical industrial activities have resulted in soil contamination at sites globally. Many of these sites are located along coastlines, making them vulnerable to hydrologic and biogeochemical alterations due to climate change and sea-level rise. However, the impact of hydrologic dynamics on contaminant mobility in tidal environments has not been well studied. Here, we collected data from pressure transducers in wells, multi-level redox sensors, and porewater samplers at an As-contaminated site adjacent to a freshwater tidal channel. Results indicate that sharp redox gradients exist and that redox conditions vary on tidal to seasonal timescales due to sub-daily water level fluctuations in the channel and seasonal groundwater-surface water interactions. The As and Fe2+ concentrations decreased during seasonal periods of net discharge to the channel. The seasonal changes were greater than tidal variations in both Eh and As concentrations, indicating that impacts of the seasonal mechanism are stronger than those of sub-daily water table fluctuations. A conceptual model describing tidal and seasonal hydro-biogeochemical coupling is presented. These findings have broad implications for understanding the impacts of sea-level rise on the mobility of natural and anthropogenic coastal solutes.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Água , Água Doce , Mudança Climática
12.
Environ Sci Technol ; 56(19): 13829-13836, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36135962

RESUMO

While silicate has been known to affect metal sorption on mineral surfaces, the mechanisms remain poorly understood. We investigated the effects of silicate on Zn sorption onto Al oxide at pH 7.5 and elucidated the mechanisms using a combination of X-ray absorption fine structure (XAFS) spectroscopy, Zn stable isotope analysis, and scanning transmission electron microscopy (STEM). XAFS analysis revealed that Zn-Al layered double hydroxide (LDH) precipitates were formed in the absence of silicate or at low Si concentrations (≤0.4 mM), whereas the formation of Zn-Al LDH was inhibited at high silicate concentrations (≥0.64 mM) due to surface-induced Si oligomerization. Significant Zn isotope fractionation (Δ66Znsorbed-aqueous = 0.63 ± 0.03‰) was determined at silicate concentrations ≥0.64 mM, larger than that induced by sorption of Zn on Al oxide (0.47 ± 0.03‰) but closer to that caused by Zn bonding to the surface of Si oxides (0.60-0.94‰), suggesting a presence of Zn-Si bonding environment. STEM showed that the sorbed silicates had a close spatial coupling with γ-Al2O3, indicating that >Si-Zn inner-sphere complexes (">" denotes surface) likely bond to the γ-Al2O3 surface to form >Al-Si-Zn ternary inner-sphere complexes. This study not only demonstrates that dissolved silicate in the natural environment plays an important role in the fate and bioavailability of Zn but also highlights the potential of coupled spectroscopic and isotopic methods in probing complex environmental processes.


Assuntos
Óxidos , Zinco , Adsorção , Hidróxidos/química , Isótopos , Minerais/química , Silicatos/química , Espectroscopia por Absorção de Raios X , Zinco/química
13.
J Hazard Mater ; 423(Pt B): 127161, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844335

RESUMO

Sea-level rise (SLR) has a vital influence on coastal hydrogeological systems, biogeochemical processes, and the fate of coastal contaminants. However, the effects of SLR-induced perturbations on the mobilization of coastal pollutants are not fully understood. In this study, the impact of SLR-induced flooding on the concentration and speciation of arsenic and selected hazardous chemicals is investigated using exceedingly contaminated sediments (5-6% As) collected from an urban coastal site in Wilmington, DE, USA. The release of contaminants from sediments was monitored before, during, and after flooding with different intensities (bottom shear stresses) through laboratory-based erosion chamber experiments. Significantly increased release of As (up to 150%) and NO3 (up to 50%) from sediments at shear stress levels typically measured in estuaries were found. The release of toxic chemicals from contaminated coastal sediments is thus not restricted to extreme flooding events but can occur throughout the year. The results also suggest that the dissolved concentrations of pollutants continue to be considerably high even after the flooding. SLR-induced flooding can hence increase the release of contaminants not only during erosion events but over longer timescales. The release mechanism proposed here contributes to improving the risk assessment of coastal water pollution as climate change and SLR continue to occur.


Assuntos
Arsênio , Elevação do Nível do Mar , Mudança Climática , Estuários , Inundações
14.
Environ Pollut ; 268(Pt B): 115944, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160733

RESUMO

Cadmium bioavailability in paddy soils is strongly affected by flooding-draining cycle. In this study, we used synchrotron-based X-ray absorption spectroscopy and a stirred-flow method to investigate the effects of flooding-draining and amendments of CaCO3 and CaSO4 on Cd speciation and release kinetics from a Cd-spiked paddy soil (total Cd concentration of 165 mg kg-1). Extended X-ray absorption fine structure analysis showed that Cd was predominantly bound to non-iron-clay minerals (e.g. Cd-kaolinite, Cd-illite, and Cd-montmorillonite, accounting for 60-100%) in the air-dried soil and 1- or 7-day flooded samples. After prolonged flooding (30 and 120 days), Cd-iron mineral complexes (e.g. Cd bound to ferrihydrite and goethite) became the predominant species (accounting for 52-100%). Stirred-flow kinetic analysis showed that both prolonged flooding and the amendments with CaCO3 and CaSO4 decreased the maximum amount and the rate coefficient of Cd release. However, the effect of prolonged flooding was reversed after a short period of draining, indicating that although Cd was immobilized during flooding, it became mobile rapidly after the soil was drained, possibly due to pH decrease and rapid oxidation of CdS. The effects of the amendments on Cd uptake in rice plants were tested in a pot experiment using the same paddy soil without Cd spiking (total Cd 2.1 mg kg-1). Amendment with CaCO3 and, to a lesser extent, CaSO4, decreased the Cd accumulation in two cultivars of rice. The combination of CaCO3 amendment and a low Cd accumulating cultivar was effective at limiting grain Cd concentration to below the 0.2 mg kg-1 limit.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Cinética , Solo , Poluentes do Solo/análise
15.
J Environ Qual ; 49(1): 184-193, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33016369

RESUMO

Phosphorus deficiency and excess are concomitant problems in agricultural soils of the mid-Atlantic region. A fundamental understanding of soil P speciation is essential to assess P fate and transport in these soils. Current methods for soil P speciation often rely on sequential chemical extractions, which can introduce artifacts during analysis. To overcome limitations of current methods, this study evaluated synchrotron-based micro-focused X-ray fluorescence (µ-XRF) and X-ray absorption near-edge spectroscopy (µ-XANES) techniques to assess soil P speciation in agricultural soils collected from the mid-Atlantic region of the United States. Three soils with varying chemical and physical properties were analyzed with µ-XRF maps collected at high (12,000 eV) and tender (2240 eV) energies to evaluate colocation of P with Fe, Al, Ca, and Si in soil samples, and µ-XANES spectra were collected at the P K-edge for P hotspots. Combined µ-XRF and µ-XANES analysis was useful for identifying Ca phosphate, Fe phosphate, Al-sorbed P, and Fe-sorbed P species in heterogeneous soil samples. X-ray fluorescence maps were valuable to distinguish Al-oxide sorbed P from Fe-oxide sorbed P species. A low signal-to-noise ratio often limited µ-XANES data collection in regions with diffuse, low concentrations of P. Therefore, some P species may not have been detected during analysis. Even with varying degrees of self-absorption and signal-to-noise ratios in µ-XANES spectra, important inferences regarding P speciation in mid-Atlantic soils were made. This study highlights the potential of µ-XANES analysis for use in environmental and agricultural sciences to provide insights into P fate and transport in soils.


Assuntos
Poluentes do Solo/análise , Solo , Fósforo , Síncrotrons , Espectroscopia por Absorção de Raios X
16.
Sci Total Environ ; 745: 140922, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32736101

RESUMO

Long-term intake of groundwater with elevated iodine concentration can cause thyroid dysfunction in humans; however, little is known on the mechanisms controlling the fate of iodine in groundwater systems. In this study, the groundwater and aquifer sediment samples from the Datong basin, a geologic iodine-affected area, were collected to perform the batch incubation experiments to understand the release and enrichment of iodine in groundwater systems. The results showed that the groundwater from the deep confined aquifer had a total iodine concentration of 473 µg/L, higher than that of shallow groundwater, and iodide is the dominant species of iodine. The deep confined aquifer was characterized by the reducing conditions. Meanwhile, a higher ratio of Fe(II) to total Fe was observed in bulk deep aquifer sediments (59%) in comparison with that of shallow sediments (33%). The results of batch incubation experiments showed that during the reductive transformation of Fe minerals in shallow aquifer sediments, iodide concentration in solution was gradually increasing from 24.7 to 101.5 µg/L after 10 days. It suggests that the transformation of Fe minerals in aquifer sediments acts as a diver causing the release of iodine from sediment into groundwater, which was further supported by the features Fe K-edge EXAFS before and after the batch experiments. Moreover, the changes in iodine species from iodate or organic iodine into iodide during the release further promotes the release of sediment iodine, which was supported by the developed geochemical models. The prevalence of reducing condition in deep aquifer favors the enrichment of released iodide. This study provides new insights into the mechanisms of iodide enrichment observed in deep confined aquifer.

17.
Geochem Trans ; 21(1): 5, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32239381
18.
Environ Sci Technol ; 54(8): 5093-5101, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32182047

RESUMO

The role and distribution of iron (Fe) species in physical soil fractions have received remarkably little attention in field-scale systems. Here, we identify and quantify the Fe phases into two fractions (fine sand, FSa, and fine silt and clay, FSi + Cl), isolated from an agricultural soil unamended and amended with different organic materials, by Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The linear combination fitting and wavelet transform of EXAFS data revealed noticeable differences between unamended FSa and FSi + Cl fractions. Specifically, the FSi + Cl fraction was mainly characterized by ferrihydrite (48%) and Fe(III)-soil organic matter (SOM) complexes (37%), whereas in the FSa fraction, ferrihydrite still represented a major phase (44%), with a lower contribution from Fe(III)-SOM (18%). In the FSa fraction, the addition of the organic amendments resulted in an increase of Fe-SOM complexes (31-35%) and a decrease of ferrihydrite (28-29%). By contrast, in the amended FSi + Cl fractions, the added organic matter led to negligible changes in percent ferrihydrite. Therefore, regardless of the amendment type, the addition of organic matter to soil increased the capability of the coarse fraction (FSa) to stabilize organic carbon, thus pointing out that the role of FSa in carbon sequestration in agricultural soils at a global scale may be overlooked.


Assuntos
Fertilizantes , Solo , Carvão Vegetal , Compostos Férricos , Ferro
19.
Environ Sci Technol ; 54(5): 2951-2960, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32023050

RESUMO

Permafrost contains a large (1700 Pg C) terrestrial pool of organic matter (OM) that is susceptible to degradation as global temperatures increase. Of particular importance is syngenetic Yedoma permafrost containing high OM content. Reactive iron phases promote stabilizing interactions between OM and soil minerals and this stabilization may be of increasing importance in permafrost as the thawed surface region ("active layer") deepens. However, there is limited understanding of Fe and other soil mineral phase associations with OM carbon (C) moieties in permafrost soils. To elucidate the elemental associations involved in organomineral complexation within permafrost systems, soil cores spanning a Pleistocene permafrost chronosequence (19,000, 27,000, and 36,000 years old) were collected from an underground tunnel near Fairbanks, Alaska. Subsamples were analyzed via scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy at the nano- to microscale. Amino acid-rich moieties decreased in abundance across the chronosequence. Strong correlations between C and Fe with discrete Fe(III) or Fe(II) regions selectively associated with specific OM moieties were observed. Additionally, Ca coassociated with C through potential cation bridging mechanisms. Results indicate Fe(III), Fe(II), and mixed valence phases associated with OM throughout diverse permafrost environments, suggesting that organomineral complexation is crucial to predict C stability as permafrost systems warm.


Assuntos
Pergelissolo , Alaska , Carbono , Compostos Férricos , Solo
20.
Environ Int ; 126: 234-241, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822652

RESUMO

Apart from surface complexation, precipitation of minerals also plays an important role in reducing the mobility and transport of heavy metals in the environment. In this study, Cd(II) sorption species on surfaces of γ-Al2O3 at pH 7.5 were characterized using multiple techniques. Results show that in addition to adsorption complexes, Cd hydroxide phases (Cd(OH)2 precipitates and Cdx(OH)y polynuclear complexes) were formed at the initial stages of Cd(II) sorption and gradually transformed to CdCO3 with time. In addition, Cd(II) formed CdAl layered double hydroxide (LDH) on γ-Al2O3 under various conditions, independent of temperature and Cd loadings. The formation of Cd hydroxide phases and CdAl LDH could be ascribed to surface-induced precipitation because the bulk solution was undersaturated with respect to hydroxides. CdAl LDH formation on the Al-bearing mineral here is rather surprising because typically this occurs with elements of ionic radii similar to that of Al3+; this formation is unknown for metals such as Cd(II) with a much larger ionic radius. The thermodynamic feasibility of CdAl LDH formation was further confirmed by laboratory synthesis of CdAl LDH and density function theory (DFT) calculations. These results suggest that Cd precipitation on Al-bearing minerals can be an important mechanism for Cd immobilization in the natural environment. Additionally, the finding of CdAl LDH formation on Al-bearing minerals and the thermodynamic stability of CdAl LDH provides new insights into the remediation of Cd-polluted soils and aquatic systems.


Assuntos
Óxido de Alumínio/química , Cádmio/química , Adsorção , Precipitação Química , Recuperação e Remediação Ambiental , Hidróxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...