Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 35(2): 548-57, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16510699

RESUMO

The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.


Assuntos
Agricultura/economia , Carbono/análise , Modelos Teóricos , Nitrogênio/análise , Solo , Animais , Clima , Produtos Agrícolas/economia , Leite/economia , Nova Zelândia , Fósforo/análise
2.
J Environ Qual ; 32(3): 760-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12809276

RESUMO

Soil organic C is often suggested as an indicator of soil quality, but desirable targets are rarely specified. We tested three approaches to define maximum and lowest desirable soil C contents for four New Zealand soil orders. Approach 1 used the New Zealand National Soils Database (NSD). The maximum C content was defined as the median value of long-term pastures, and the lower quartile defined the lowest desirable soil C content. Approach 2 used the CENTURY model to predict maximum C contents of long-term pasture. Lowest desirable content was defined by the level that still allowed recovery to 80% of the maximum C content over 25 yr. Approach 3 used an expert panel to define desirable C contents based on production and environmental criteria. Median C contents (0-20 cm) for the Recent, Granular, Melanic, and Allophanic orders were 72, 88, 98, 132 Mg ha(-1), and similar to contents predicted by the CENTURY model (78, 93, 102, and 134 Mg ha(-1), respectively). Lower quartile values (54, 78, 73, and 103 Mg ha(-1), respectively) were similar to the lowest desirable C contents calculated by CENTURY (55, 54, 67, and 104 Mg ha(-1), respectively). Expert opinion was that C contents could be depleted below these values with tolerable effects on production but less so for the environment. The CENTURY model is our preferred approach for setting soil organic C targets, but the model needs calibrating for other soils and land uses. The statistical and expert opinion approaches are less defensible in setting lower limits for desirable C contents.


Assuntos
Carbono/análise , Modelos Teóricos , Solo , Agricultura , Carbono/metabolismo , Monitoramento Ambiental , Medição de Risco , Poluentes do Solo
3.
J Environ Qual ; 31(6): 1768-73, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12469824

RESUMO

Soil depletion and degradation have been increasingly recognized as important environmental issues in many parts of the world. Over the last decade a number of political and legislative measures have been introduced to encourage and enforce sustainable soil management in New Zealand. Application of the new legislation has highlighted gaps in our knowledge of soil quality and a lack of scientific methods to assess and monitor soil quality. This paper describes the legislative measures and outlines the sdentific response to the needs of regulatory agencies responsible for maintaining environmental quality. The research recommended a set of indicators to assess soil quality. Each soil quality attribute has an associated "target range" defining the acceptable value for the attribute. The paper also discusses the communication of results to end-users, including the development of a computerized assessment tool. The legislative measures and scientific response have fostered a closer relationship between the policy and science communities, leading to more well-focused research, but greater collaboration is still required.


Assuntos
Meio Ambiente , Fidelidade a Diretrizes , Poluentes do Solo/análise , Agricultura , Comunicação , Monitoramento Ambiental , Relações Interinstitucionais , Nova Zelândia , Política , Software
4.
J Environ Qual ; 31(6): 1848-57, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12469834

RESUMO

New Zealand is a signatory to international conventions on environmental performance, and soil quality information is needed for reporting both at a national and regional level. Soil quality was measured at 222 sites in five regions of New Zealand (12 soil orders and 9 land-use categories). Topsoil (0-100 mm) properties measured were total carbon and nitrogen, potentially mineralizable N, pH, Olsen P, cation exchange capacity, bulk density, total porosity, macroporosity, and total available and readily available water. Our objectives were to gauge the representativeness of the sample, determine the contribution from land use or soil order to variability, rationalize the data set, and identify concerns for long-term sustainable land use. Soil and land use combinations were both under- or overrepresented in the data set compared with national distribution. Soil order and land-use categories explained 55 to 76% of the variance in soil properties. Total C contents of pastures were comparable with indigenous forest soils, but pastures were less acidic and with higher N and P contents. Plantation forests had characteristics similar to indigenous forests on comparable soils. Cropland soils comprised <1% of the national land cover and generally had high inorganic fertility and low organic matter, with evidence of compaction. Seven characteristics (total C, total N, mineralizable N, pH, Olsen P, bulk density, and macroporosity) explained 87% of the total variability. The findings are being used by monitoring agencies to raise awareness about soil quality in the wider community, set land management guidelines, and develop policies.


Assuntos
Agricultura , Meio Ambiente , Poluentes do Solo/análise , Monitoramento Ambiental , Nova Zelândia , Formulação de Políticas , Controle de Qualidade , Valores de Referência , Árvores
5.
Environ Pollut ; 115(2): 191-204, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11706792

RESUMO

We investigated whether nitrate-N (NO3(-)-N) concentrations of shallow groundwater (< 30 m from the land surface) in a region of intensive agriculture could be predicted on the basis of land use information, topsoil properties that affect the ability of topsoil to generate nitrate at a site, or the 'leaching risk' at different sites. Groundwater NO3(-)-N concentrations were collected biannually for 3 years at 88 sites within the Waikato Region of New Zealand. The land use was classed as either the predominant land use of the farm where the well or bore was located, or the dominant land use within a 500 m radius of the well or bore. Topsoil properties that affect the ability of soil to generate nitrate were also measured at all the sites, and a leaching risk assessment model 'DRASTIC' was used to assess the risk of NO3(-)-N leaching to groundwater at each site. The concentration of NO3(-)-N in shallow groundwater in the Waikato Region varied considerably, both temporally and spatially. Nine percent of sites surveyed had groundwater NO3(-)-N concentrations exceeding maximum allowable concentrations of 11.3 ppm recommended by the World Health Organisation for potable drinking water which is accepted as a public health standard in New Zealand. Over half (56%) of the sites had concentrations that exceeded 3 ppm, indicating effects of human activities (commonly referred to as a human activity value). Very few trends in NO3(-)-N concentration that could be attributed to land use were identified, although market garden sites had higher concentrations of NO3(-)-N in underlying groundwater than drystock/sheep sites when the land use within 500 m radius of a sampling site was used to define the land use. There was also some evidence that within a district, NO3(-)-N concentrations in groundwater increased as the proportion of area used for dairy farming increased. Compared to pastoral land, market gardens had lower total C and N, potentially mineralisable N and denitrifying enzyme assay. However, none of these soil properties were directly related to groundwater NO3(-)-N concentrations. Instead, the DRASTIC index (which ranks sites according to their risk of solute leaching) gave the best correlation with groundwater NO3(-)-N concentrations. The permeability of the vadose zone was the most important parameter. The three approaches used were all considered unsuitable for assessing nitrate concentrations of groundwater, although a best-fit combination of parameters measured was able to account for nearly half the variance in groundwater NO3(-)-N concentrations. We suggest that non-point source groundwater NO3(-)-N contamination in the region reflects the intensive agricultural practices, and that localised, site-specific, factors may affect NO3(-)-N concentrations in shallow groundwaters as much as the general land use in the surrounding area.


Assuntos
Agricultura , Nitratos/análise , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Poluição da Água/estatística & dados numéricos , Animais , Carbono/análise , Fertilizantes/análise , Água Doce/análise , Humanos , Nova Zelândia , Reprodutibilidade dos Testes , Solo/análise , Movimentos da Água , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...