Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 116(24): 241105, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367381

RESUMO

Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.

2.
Phys Rev Lett ; 115(11): 111101, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406816

RESUMO

In this work we present results of a direct search for strange quark matter (SQM) in cosmic rays with the PAMELA space spectrometer. If this state of matter exists it may be present in cosmic rays as particles, called strangelets, having a high density and an anomalously high mass-to-charge (A/Z) ratio. A direct search in space is complementary to those from ground-based spectrometers. Furthermore, it has the advantage of being potentially capable of directly identifying these particles, without any assumption on their interaction model with Earth's atmosphere and the long-term stability in terrestrial and lunar rocks. In the rigidity range from 1.0 to ∼1.0×10^{3} GV, no such particles were found in the data collected by PAMELA between 2006 and 2009. An upper limit on the strangelet flux in cosmic rays was therefore set for particles with charge 1≤Z≤8 and mass 4≤A≤1.2×10^{5}. This limit as a function of mass and as a function of magnetic rigidity allows us to constrain models of SQM production and propagation in the Galaxy.

3.
Nature ; 458(7238): 607-9, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19340076

RESUMO

Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium, which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars and microquasars or through dark matter annihilation, which would be 'primary sources'. Previous statistically limited measurements of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

4.
Phys Rev Lett ; 102(5): 051101, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19257498

RESUMO

A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g., dark matter particle annihilations.

5.
Adv Space Res ; 33(8): 1352-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15803627

RESUMO

The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions.


Assuntos
Encéfalo/efeitos da radiação , Radiação Cósmica , Luz , Retina/efeitos da radiação , Voo Espacial/instrumentação , Percepção Visual/efeitos da radiação , Ausência de Peso , Adaptação à Escuridão , Eletrofisiologia , Desenho de Equipamento , Meio Ambiente Extraterreno , Humanos , Monitorização Fisiológica , Fosfenos , Estimulação Luminosa , Monitoramento de Radiação , Pesquisa
7.
Adv Space Res ; 31(1): 135-40, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12577986

RESUMO

In this work we present preliminary results of nuclear composition measurements on board space station MIR obtained with SILEYE-2 particle telescope. SILEYE-2 was placed on MIR in 1997 and has been working since then. It consists of an array of 6 active silicon strip detectors which allow nuclear and energetic identification of cosmic rays in the energy range between approximately 30 and 200 MeV/n. The device is attached to an helmet and connected to an eye mask which shields the cosmonaut eyes from light and allow studies of the Light Flashes (LF) phenomenon. In addition to the study of the causes of LF, the device is used to perform real time long term radiation environment monitoring inside the MIR, performing measurements in solar quiet and active days.


Assuntos
Radiação Cósmica , Fosfenos , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial/instrumentação , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Meio Ambiente Extraterreno , Olho/efeitos da radiação , Dispositivos de Proteção da Cabeça , Humanos , Luz , Estimulação Luminosa , Silício , Astronave/instrumentação
8.
Adv Space Res ; 31(1): 141-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12577991

RESUMO

The ALTEA project participates to the quest for increasing the safety of manned space flights. It addresses the problems related to possible functional damage to neural cells and circuits due to particle radiation in space environment. Specifically it aims at studying the functionality of the astronauts' Central Nervous Systems (CNS) during long space flights and relating it to the peculiar environments in space, with a particular focus on the particle flux impinging in the head. The project is a large international and multidisciplinary collaboration. Competences in particle physics, neurophysiology, psychophysiology, electronics, space environment, data analyses will work together to construct the fully integrated vision electrophysiology and particle analyser system which is the core device of the project: an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in late 2002. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.


Assuntos
Sistema Nervoso Central/efeitos da radiação , Radiação Cósmica , Fosfenos , Monitoramento de Radiação/instrumentação , Voo Espacial/instrumentação , Ausência de Peso , Adaptação Fisiológica , Medicina Aeroespacial/instrumentação , Sistema Nervoso Central/fisiologia , Eletroencefalografia , Desenho de Equipamento , Dispositivos de Proteção da Cabeça , Humanos , Monitorização Fisiológica/instrumentação , Estimulação Luminosa , Doses de Radiação , Retina/fisiologia , Retina/efeitos da radiação
9.
Acta Astronaut ; 50(8): 511-25, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11962526

RESUMO

The phenomenon of light flashes (LF) in eyes for people in space has been investigated onboard Mir. Data on particles hitting the eye have been collected with the SilEye detectors, and correlated with human observations. It is found that a nucleus in the radiation environment of Mir has roughly a 1% probability to cause an LF, whereas the proton probability is almost three orders of magnitude less. As a function of LET, the LF probability increases above 10 keV/micrometer, reaching about 5% at around 50 keV/micrometer.


Assuntos
Radiação Cósmica , Olho/efeitos da radiação , Luz , Monitoramento de Radiação/instrumentação , Voo Espacial , Percepção Visual/efeitos da radiação , Medicina Aeroespacial , Astronautas , Íons Pesados , Humanos , Transferência Linear de Energia , Masculino , Fosfenos , Prótons , Radiometria , Silício , Atividade Solar , Fatores de Tempo , Visão Ocular/efeitos da radiação , Ausência de Peso
10.
Phys Med ; 17 Suppl 1: 255-7, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11776990

RESUMO

The ALTEA project studies the problems related to possible functional damage to the Central Nervous System (CNS) due to particle radiation in space environment. The project is a large international and multi-disciplinary collaboration. The ALTEA instrumentation is an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and the passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in February 2003. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.


Assuntos
Radiação Cósmica , Olho/efeitos da radiação , Luz , Fosfenos , Voo Espacial/instrumentação , Percepção Visual/efeitos da radiação , Medicina Aeroespacial/instrumentação , Adaptação à Escuridão/efeitos da radiação , Eletroencefalografia , Desenho de Equipamento , Meio Ambiente Extraterreno , Humanos , Estimulação Luminosa/instrumentação , Astronave
11.
Astrophys J ; 534(2): L177-L180, 2000 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-10813676

RESUMO

We report new results for the cosmic-ray antiproton-to-proton ratio from 3 to 50 GeV at the top of the atmosphere. These results represent the first measurements, on an event-by-event basis, of mass-resolved antiprotons above 18 GeV. The results were obtained with the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas-RICH (Ring-Imaging Cerenkov) counter and a silicon-tungsten imaging calorimeter. The RICH detector was the first ever flown that is capable of identifying charge-one particles at energies above 5 GeV. The spectrometer was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The measured p&d1;/p ratio is in agreement with a pure secondary interstellar production.

12.
Adv Space Res ; 25(10): 2075-9, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11542859

RESUMO

The SilEye experiment aims to study the cause and processes related to the anomalous Light Flashes (LF) perceived by astronauts in orbit and their relation with Cosmic Rays. These observations will be also useful in the study of the long duration manned space flight environment. Two PC-driven silicon detector telescopes have been built and placed aboard Space Station MIR. SilEye-1 was launched in 1995 and provided particles track and LF information; the data gathered indicate a linear dependence of FLF(Hz) ( 4 2) 10(3) 5.3 1.7 10(4) Fpart(Hz) if South Atlantic Anomaly fluxes are not included. Even though higher statistic is required, this is an indication that heavy ion interactions with the eye are the main LF cause. To improve quality and quantity of measurements, a second apparatus, SilEye-2, was placed on MIR in 1997, and started work from August 1998. This instrument provides energetic information, which allows nuclear identification in selected energy ranges; we present preliminary measurements of the radiation field inside MIR performed with SilEye-2 detector in June 1998.


Assuntos
Radiação Cósmica , Luz , Prótons , Voo Espacial/instrumentação , Percepção Visual/efeitos da radiação , Adaptação à Escuridão , Interpretação Estatística de Dados , Humanos , Estimulação Luminosa , Doses de Radiação , Silício , Astronave/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...