Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6585, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329008

RESUMO

The intrinsically disordered RG/RGG repeat domain is found in several nucleolar and P-granule proteins, but how it influences their phase separation into biomolecular condensates is unclear. We survey all RG/RGG repeats in C. elegans and uncover nucleolar and P-granule-specific RG/RGG motifs. An uncharacterized protein, K07H8.10, contains the longest nucleolar-like RG/RGG domain in C. elegans. Domain and sequence similarity, as well as nucleolar localization, reveals K07H8.10 (NUCL-1) to be the homolog of Nucleolin, a protein conserved across animals, plants, and fungi, but previously thought to be absent in nematodes. Deleting the RG/RGG repeats within endogenous NUCL-1 and a second nucleolar protein, GARR-1 (GAR1), demonstrates these domains are dispensable for nucleolar accumulation. Instead, their RG/RGG repeats contribute to the phase separation of proteins into nucleolar sub-compartments. Despite this common RG/RGG repeat function, only removal of the GARR-1 RG/RGG domain affects worm fertility and development, decoupling precise sub-nucleolar structure from nucleolar function.


Assuntos
Caenorhabditis elegans , Proteínas de Ligação a RNA , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Nucléolo Celular/metabolismo , Nucleolina
2.
Brain ; 145(11): 3999-4015, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35148379

RESUMO

Molecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT. The severity of neuropathy in the patients was assessed by the CMT Neuropathy Examination Score (CMTES). We performed multitargeted proteomics on both sample sets to identify proteins elevated across multiple mouse models and CMT patients. Selected proteins and additional potential biomarkers, such as growth differentiation factor 15 (GDF15) and cell free mitochondrial DNA, were validated by ELISA and quantitative PCR, respectively. We propose that neural cell adhesion molecule 1 (NCAM1) is a candidate biomarker for CMT, as it was elevated in Gjb1-null, Hspb8K141N, GarsC201R and GarsP278KY mice as well as in patients with both demyelinating (CMT1A) and axonal (CMT2D, CMT2N) forms of CMT. We show that NCAM1 may reflect disease severity, demonstrated by a progressive increase in mouse models with time and a significant positive correlation with CMTES neuropathy severity in patients. The increase in NCAM1 may reflect muscle regeneration triggered by denervation, which could potentially track disease progression or the effect of treatments. We found that member proteins of the complement system were elevated in Gjb1-null and Hspb8K141N mouse models as well as in patients with both demyelinating and axonal CMT, indicating possible complement activation at the impaired nerve terminals. However, complement proteins did not correlate with the severity of neuropathy measured on the CMTES scale. Although the complement system does not seem to be a prognostic biomarker, we do show complement elevation to be a common disease feature of CMT, which may be of interest as a therapeutic target. We also identify serum GDF15 as a highly sensitive diagnostic biomarker, which was elevated in all CMT genotypes as well as in Hspb8K141N, Gjb1-null, GarsC201R and GarsP278KY mouse models. Although we cannot fully explain its origin, it may reflect increased stress response or metabolic disturbances in CMT. Further large and longitudinal patient studies should be performed to establish the value of these proteins as diagnostic and prognostic molecular biomarkers for CMT.


Assuntos
Antígeno CD56 , Doença de Charcot-Marie-Tooth , Fator 15 de Diferenciação de Crescimento , Animais , Camundongos , Biomarcadores , Antígeno CD56/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Fator 15 de Diferenciação de Crescimento/genética , Proteínas , Humanos
3.
Science ; 373(6559): 1161-1166, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516840

RESUMO

Heterozygous mutations in six transfer RNA (tRNA) synthetase genes cause Charcot-Marie-Tooth (CMT) peripheral neuropathy. CMT mutant tRNA synthetases inhibit protein synthesis by an unknown mechanism. We found that CMT mutant glycyl-tRNA synthetases bound tRNAGly but failed to release it, resulting in tRNAGly sequestration. This sequestration potentially depleted the cellular tRNAGly pool, leading to insufficient glycyl-tRNAGly supply to the ribosome. Accordingly, we found ribosome stalling at glycine codons and activation of the integrated stress response (ISR) in affected motor neurons. Moreover, transgenic overexpression of tRNAGly rescued protein synthesis, peripheral neuropathy, and ISR activation in Drosophila and mouse CMT disease type 2D (CMT2D) models. Conversely, inactivation of the ribosome rescue factor GTPBP2 exacerbated peripheral neuropathy. Our findings suggest a molecular mechanism for CMT2D, and elevating tRNAGly levels may thus have therapeutic potential.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Glicina-tRNA Ligase/metabolismo , RNA de Transferência de Glicina/metabolismo , Animais , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Drosophila melanogaster , Feminino , Glicina-tRNA Ligase/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , RNA de Transferência de Glicina/genética
4.
J Clin Invest ; 129(12): 5568-5583, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31557132

RESUMO

Gene therapy approaches are being deployed to treat recessive genetic disorders by restoring the expression of mutated genes. However, the feasibility of these approaches for dominantly inherited diseases - where treatment may require reduction in the expression of a toxic mutant protein resulting from a gain-of-function allele - is unclear. Here we show the efficacy of allele-specific RNAi as a potential therapy for Charcot-Marie-Tooth disease type 2D (CMT2D), caused by dominant mutations in glycyl-tRNA synthetase (GARS). A de novo mutation in GARS was identified in a patient with a severe peripheral neuropathy, and a mouse model precisely recreating the mutation was produced. These mice developed a neuropathy by 3-4 weeks of age, validating the pathogenicity of the mutation. RNAi sequences targeting mutant GARS mRNA, but not wild-type, were optimized and then packaged into AAV9 for in vivo delivery. This almost completely prevented the neuropathy in mice treated at birth. Delaying treatment until after disease onset showed modest benefit, though this effect decreased the longer treatment was delayed. These outcomes were reproduced in a second mouse model of CMT2D using a vector specifically targeting that allele. The effects were dose dependent, and persisted for at least 1 year. Our findings demonstrate the feasibility of AAV9-mediated allele-specific knockdown and provide proof of concept for gene therapy approaches for dominant neuromuscular diseases.


Assuntos
Doença de Charcot-Marie-Tooth/terapia , Terapia Genética , Glicina-tRNA Ligase/genética , Interferência de RNA , Alelos , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Mutação
5.
Front Neurosci ; 11: 312, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620277

RESUMO

The specialized structure of the neuron requires that homeostasis is sustained over the meter or more that may separate a cell body from its axonal terminus. Given this impressive distance and an axonal volume that is many times that of the cell body, how is such a compartment grown during development, re-grown after injury, and maintained throughout adulthood? While early answers to these questions focused on the local environment or the cell soma as supplying the needs of the axon, it is now well-established that the axon has some unique needs that can only be met from within. Decades of research have revealed local translation as an indispensable mechanism of axonal homeostasis during development and regeneration in both invertebrates and vertebrates. In contrast, the extent to which the adult, mammalian axonal proteome is maintained through local translation remains unclear and controversial. This mini-review aims to highlight important experiments that have helped to shape the field of axonal translation, to discuss conceptual arguments and recent evidence that supports local translation as important to the maintenance of adult axons, and to suggest experimental approaches that have the potential to further illuminate the role of axonal translation in neuronal homeostasis.

6.
Proc Natl Acad Sci U S A ; 114(16): E3324-E3333, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28351971

RESUMO

Charcot-Marie-Tooth disease type 2D (CMT2D) is a peripheral nerve disorder caused by dominant, toxic, gain-of-function mutations in the widely expressed, housekeeping gene, GARS The mechanisms underlying selective nerve pathology in CMT2D remain unresolved, as does the cause of the mild-to-moderate sensory involvement that distinguishes CMT2D from the allelic disorder distal spinal muscular atrophy type V. To elucidate the mechanism responsible for the underlying afferent nerve pathology, we examined the sensory nervous system of CMT2D mice. We show that the equilibrium between functional subtypes of sensory neuron in dorsal root ganglia is distorted by Gars mutations, leading to sensory defects in peripheral tissues and correlating with overall disease severity. CMT2D mice display changes in sensory behavior concordant with the afferent imbalance, which is present at birth and nonprogressive, indicating that sensory neuron identity is prenatally perturbed and that a critical developmental insult is key to the afferent pathology. Through in vitro experiments, mutant, but not wild-type, GlyRS was shown to aberrantly interact with the Trk receptors and cause misactivation of Trk signaling, which is essential for sensory neuron differentiation and development. Together, this work suggests that both neurodevelopmental and neurodegenerative mechanisms contribute to CMT2D pathogenesis, and thus has profound implications for the timing of future therapeutic treatments.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Glicina-tRNA Ligase/fisiologia , Mutação , Receptor trkA/metabolismo , Células Receptoras Sensoriais/patologia , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Receptor trkA/genética , Células Receptoras Sensoriais/metabolismo
7.
Cell Rep ; 18(13): 3178-3191, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355569

RESUMO

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited polyneuropathies. Mutations in 80 genetic loci can cause forms of CMT, resulting in demyelination and axonal dysfunction. The clinical presentation, including sensory deficits, distal muscle weakness, and atrophy, can vary greatly in severity and progression. Here, we used mouse models of CMT to demonstrate genetic interactions that result in a more severe neuropathy phenotype. The cell adhesion molecule Nrcam and the Na+ channel Scn8a (NaV1.6) are important components of nodes. Homozygous Nrcam and heterozygous Scn8a mutations synergized with both an Sh3tc2 mutation, modeling recessive demyelinating Charcot-Marie-Tooth type 4C, and mutations in Gars, modeling dominant axonal Charcot-Marie-Tooth type 2D. We conclude that genetic variants perturbing the structure and function of nodes interact with mutations affecting the cable properties of axons by thinning myelin or reducing axon diameter. Therefore, genes integral to peripheral nodes are candidate modifiers of peripheral neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doenças Desmielinizantes/genética , Nervos Periféricos/patologia , Animais , Axônios/metabolismo , Proteínas de Transporte/genética , Moléculas de Adesão Celular/genética , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Heterozigoto , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Junção Neuromuscular/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(15): E2189-98, 2016 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035978

RESUMO

Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions.


Assuntos
Antineoplásicos/efeitos adversos , Epitélio/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Paclitaxel/efeitos adversos , Nervos Periféricos/efeitos dos fármacos , Nadadeiras de Animais/citologia , Nadadeiras de Animais/inervação , Animais , Axônios/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Expressão Gênica , Humanos , Queratinócitos/efeitos dos fármacos , Metaloproteinase 13 da Matriz/genética , Pele/citologia , Pele/efeitos dos fármacos , Pele/inervação , Percepção do Tato/efeitos dos fármacos , Testes de Toxicidade , Peixe-Zebra
9.
J Neurosci ; 36(11): 3254-67, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26985035

RESUMO

Patients with Charcot-Marie-Tooth Type 2D (CMT2D), caused by dominant mutations in Glycl tRNA synthetase (GARS), present with progressive weakness, consistently in the hands, but often in the feet also. Electromyography shows denervation, and patients often report that early symptoms include cramps brought on by cold or exertion. Based on reported clinical observations, and studies of mouse models of CMT2D, we sought to determine whether weakened synaptic transmission at the neuromuscular junction (NMJ) is an aspect of CMT2D. Quantal analysis of NMJs in two different mouse models of CMT2D (Gars(P278KY), Gars(C201R)), found synaptic deficits that correlated with disease severity and progressed with age. Results of voltage-clamp studies revealed presynaptic defects characterized by: (1) decreased frequency of spontaneous release without any change in quantal amplitude (miniature endplate current), (2) reduced amplitude of evoked release (endplate current) and quantal content, (3) age-dependent changes in the extent of depression in response to repetitive stimulation, and (4) release failures at some NMJs with high-frequency, long-duration stimulation. Drugs that modify synaptic efficacy were tested to see whether neuromuscular performance improved. The presynaptic action of 3,4 diaminopyridine was not beneficial, whereas postsynaptic-acting physostigmine did improve performance. Smaller mutant NMJs with correspondingly fewer vesicles and partial denervation that eliminates some release sites also contribute to the reduction of release at a proportion of mutant NMJs. Together, these voltage-clamp data suggest that a number of release processes, while essentially intact, likely operate suboptimally at most NMJs of CMT2D mice. SIGNIFICANCE STATEMENT: We have uncovered a previously unrecognized aspect of axonal Charcot-Marie-Tooth disease in mouse models of CMT2D. Synaptic dysfunction contributes to impaired neuromuscular performance and disease progression. This suggests that drugs which improve synaptic efficacy at the NMJ could be considered in treating the pathophysiology of CMT2D patients.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Modelos Animais de Doenças , Glicina-tRNA Ligase/genética , Mutação/genética , Junção Neuromuscular/patologia , Transmissão Sináptica/genética , Fatores Etários , Aminopiridinas/farmacologia , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Estimulação Elétrica , Imageamento Tridimensional , Camundongos , Camundongos Transgênicos , Placa Motora/genética , Placa Motora/fisiopatologia , Força Muscular/genética , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Técnicas de Patch-Clamp , Receptores Colinérgicos/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Vesículas Sinápticas/patologia , Vesículas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...