Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(21): 8227-8241, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817593

RESUMO

The three human SNM1 metallo-ß-lactamase fold nucleases (SNM1A-C) play key roles in DNA damage repair and in maintaining telomere integrity. Genetic studies indicate that they are attractive targets for cancer treatment and to potentiate chemo- and radiation-therapy. A high-throughput screen for SNM1A inhibitors identified diverse pharmacophores, some of which were shown by crystallography to coordinate to the di-metal ion centre at the SNM1A active site. Structure and turnover assay-guided optimization enabled the identification of potent quinazoline-hydroxamic acid containing inhibitors, which bind in a manner where the hydroxamic acid displaces the hydrolytic water and the quinazoline ring occupies a substrate nucleobase binding site. Cellular assays reveal that SNM1A inhibitors cause sensitisation to, and defects in the resolution of, cisplatin-induced DNA damage, validating the tractability of MBL fold nucleases as cancer drug targets.

2.
Bioorg Med Chem Lett ; 98: 129595, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141860

RESUMO

Screening a library of >100,000 compounds identified the substituted tetrazole compound 1 as a selective TRPML1 agonist. Both enantiomers of compound 1 were separated and profiled in vitro and in vivo. Their selectivity, ready availability and CNS penetration should enable them to serve as the tool compounds of choice in future TRPML1 channel activation studies. SAR studies on conformationally locked macrocyclic analogs further improved the TRPML1 agonist potency while retaining the selectivity.


Assuntos
Tetrazóis , Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/agonistas , Relação Estrutura-Atividade , Tetrazóis/química , Tetrazóis/farmacologia
3.
Nat Chem ; 14(1): 15-24, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903857

RESUMO

Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-ß-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential ß-lactamase stable ß-lactam mimics. Subsequent structure-activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL-carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.


Assuntos
Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/metabolismo , Animais , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Ligação Proteica , Relação Estrutura-Atividade , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-31015150

RESUMO

Infections with parasitic nematodes are among the most significant of the neglected tropical diseases affecting about a billion people living mainly in tropical regions with low economic activity. The most effective current strategy to control nematode infections involves large scale treatment programs with anthelmintic drugs. This strategy is at risk from the emergence of drug resistant parasites. Parasitic nematodes also affect livestock, which are treated with the same limited group of anthelmintic drugs. Livestock parasites resistant to single drugs, and even multi-drug resistant parasites, are appearing in many areas. There is therefore a pressing need for new anthelmintic drugs. Here we use the nematode Caenorhabditis elegans as a model for parasitic nematodes and demonstrate that sinefungin, a competitive inhibitor of methyltransferases, causes a delay in development and reduced fecundity, and inhibits spliced leader trans-splicing. Spliced leader trans-splicing is an essential step in gene expression that does not occur in the hosts of parasitic nematodes, and is therefore a potential target for new anthelmintic drugs. We have exploited the ability of sinefungin to inhibit spliced leader trans-splicing to adapt a green fluorescent protein based reporter gene assay that monitors spliced leader trans-splicing for high-throughput screening for new anthelmintic compounds. We have established a protocol for robust high-throughput screening, combining mechanical dispensing of living C. elegans into 384- or 1536- well plates with addition of compounds using an acoustic liquid dispenser, and the detection of the inhibition of SL trans-splicing using a microplate reader. We have tested this protocol in a first pilot screen and envisage that this assay will be a valuable tool in the search for new anthelmintic drugs.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , RNA Líder para Processamento/genética , Trans-Splicing/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos
5.
Bioorg Med Chem Lett ; 21(1): 137-40, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21129964

RESUMO

High-throughput screening of 3.87 million compounds delivered a novel series of non-steroidal GR antagonists. Subsequent rounds of optimisation allowed progression from a non-selective ligand with a poor ADMET profile to an orally bioavailable, selective, stable, glucocorticoid receptor antagonist.


Assuntos
Receptores de Glucocorticoides/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Hidrocortisona/química , Microssomos/metabolismo , Ratos , Receptores de Glucocorticoides/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...