Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Auton Neurosci ; 174(1-2): 42-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23317537

RESUMO

This study examined the effect of 2-week infusion of angiotensin-II (Ang-II; 175 ng/kg/min) via minipump in rats (n=7) upon the mean arterial blood pressure (mBP) and heart rate (HR) response to an acute stress as compared to rats infused with saline (n=7). The acute stress was produced by a classical aversive conditioning paradigm: a 15s tone (CS+) followed by a half second tail shock. Baseline mBP in Ang-II infused rats (167.7±21.3 mm Hg; mean±SD) significantly exceeded that of controls (127.6±13.5 mm Hg). Conversely, baseline HR in the Ang-II infused rats (348±33) was significantly lower than controls (384±19 bpm). The magnitude of the mBP increase during CS+ did not differ between groups, but the HR slowing during CS+ in the Ang-II infused rats (-13.2±8.9 bpm) was significantly greater than that seen in controls (-4.2±5.5 bpm). This augmented bradycardia may be inferentially attributed to an accentuated increase in cardiac parasympathetic activity during CS+ in the Ang-II infused rats. The mBP increased above baseline immediately post-shock delivery in controls, but fell in the Ang-II infused rats, perhaps because of a 'ceiling effect' in total vascular resistance. This classical conditioning model of 'acute stress' differs from most stress paradigms in rats in yielding a HR slowing concomitant with a pressor response, and this slowing is potentiated by Ang-II.


Assuntos
Angiotensina II/metabolismo , Bradicardia/etiologia , Sistema Cardiovascular/inervação , Modelos Animais de Doenças , Sistema Nervoso Parassimpático/metabolismo , Estresse Psicológico/fisiopatologia , Angiotensina II/administração & dosagem , Angiotensina II/efeitos adversos , Animais , Aprendizagem da Esquiva , Comportamento Animal/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bradicardia/induzido quimicamente , Bradicardia/psicologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Implantes de Medicamento , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/etiologia , Hipertensão/psicologia , Masculino , Sistema Nervoso Parassimpático/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Estresse Psicológico/metabolismo
2.
Auton Neurosci ; 170(1-2): 20-9, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22809731

RESUMO

We recorded arterial pressure (BP) and heart rate (HR) in type-1 diabetic rats vs. controls for >6 months. Diabetic rats (DIAB) were maintained on insulin from the day glucose >250 mg/dl ("Day 0"). Weight was similar between groups until ~3 weeks before Day 0 when the weight in DIAB transiently lagged the controls (CONT); this difference was maintained throughout the study, but both groups otherwise gained weight in parallel. Plasma glucose attained 371 ± 109 (SD) mg/dl by day 1 in DIAB. Mean BP was similar across groups, and declined through the initial 4-6 months in both the CONT (at -0.06 ± 0.04 mmHg/day) and in the DIAB (at -0.14 ± 0.21 mmHg/day; NS vs. CONT). HR in the CONT (Month 1: 341 ± 13 bpm) exceeded DIAB (325 ± 25 bpm) through ~6 months after Day 0, and also decreased progressively over this period in CONT (-0.19 ± 0.14 bpm/day) and DIAB (-0.29 ± 0.23 bpm/day; NS vs. CONT) before leveling. The BP power within 0.35-0.45 Hz changed during the 90 min before vs. after the transition from dark to light, and light to dark; there were no between group differences. The slope of the log-log linear portion of the BP power spectrum between 1.0/h and 1/min was similar across groups, and increased in both from month 1 to month 6. Regulatory mechanisms maintain similar profiles in BP and HR in diabetic vs. control animals through the initial half year of the disease.


Assuntos
Pressão Arterial/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Frequência Cardíaca/fisiologia , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Modelos Animais de Doenças , Dinâmica não Linear , Disautonomias Primárias/sangue , Disautonomias Primárias/complicações , Disautonomias Primárias/fisiopatologia , Ratos , Ratos Endogâmicos BB , Telemetria/métodos
3.
Front Physiol ; 2: 53, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21904530

RESUMO

We recorded via telemetry the arterial blood pressure (BP) and heart rate (HR) response to classical conditioning following the spontaneous onset of autoimmune diabetes in BBDP/Wor rats vs. age-matched, diabetes-resistant control (BBDR/Wor) rats. Our purpose was to evaluate the autonomic regulatory responses to an acute stress in a diabetic state of up to 12 months duration. The stress was a 15-s pulsed tone (CS+) followed by a 0.5-s tail shock. The initial, transient increase in BP (i.e., the "first component," or C(1)), known to be derived from an orienting response and produced by a sympathetic increase in peripheral resistance, was similar in diabetic and control rats through ∼9 months of diabetes; it was smaller in diabetic rats 10 months after diabetes onset. Weakening of the C(1) BP increase in rats that were diabetic for >10 months is consistent with the effects of sympathetic neuropathy. A longer-latency, smaller, but sustained "second component" (C(2)) conditional increase in BP, that is acquired as a rat learns the association between CS+ and the shock, and which results from an increase in cardiac output, was smaller in the diabetic vs. control rats starting from the first month of diabetes. A concomitant HR slowing was also smaller in diabetic rats. The difference in the C(2) BP increase, as observed already during the first month of diabetes, is probably secondary to the effects of hyperglycemia upon myocardial metabolism and contractile function, but it may also result from effects on cognition. The small HR slowing concomitant with the C(2) pressor event is probably secondary to differences in baroreflex activation or function, though parasympathetic dysfunction may contribute later in the duration of diabetes. The nearly immediate deficit after disease onset in the C(2) response indicates that diabetes alters BP and HR responses to external challenges prior to the development of structural changes in the vasculature or autonomic nerves.

4.
Int J Hypertens ; 2011: 738689, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21629872

RESUMO

Circadian changes in cardiovascular function during the progression of diabetes mellitus in the diabetes prone rat (BBDP) (n = 8) were studied. Age-matched diabetes-resistant rats (BBDR) served as controls. BP was recorded via telemetry in contiguous 4 hr time periods over 24 hours starting with 12 midnight to 4 am as period zero (P0). Prior to onset of diabetes BP was high at P0, peaked at P2, and then fell again at P3; BP and heart rate (HR) then increased gradually at P4 and leveled off at P5, thereby exhibiting a bipodal rhythm. These patterns changed during long-term diabetes. The cross-correlation coefficient of BP and HR was not significantly different across groups at onset, but it fell significantly at 9 months of duration of diabetes (BBDP: 0.39 ± 0.06; BBDR: 0.65 ± 0.03; P < .05). These results show that changes in circadian cardiovascular rhythms in diabetes mellitus became significant at the late stage of the disease.

5.
Am J Physiol Regul Integr Comp Physiol ; 288(3): R737-41, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15498964

RESUMO

This study quantified the effect of interrupting the descending input to the sympathetic preganglionic neurons on the dynamic behavior of arterial blood pressure (BP) in the unanesthetized rat. BP was recorded for approximately 4-h intervals in six rats in the neurally intact state and in the same animals after complete spinal cord transection (SCT) between T(4) and T(5). In the intact state, power within the frequency range of 0.35-0.45 Hz was 1.53 +/- 0.38 mmHg(2)/Hz (mean +/- SD by fast Fourier transform). One week after SCT, power within this range decreased significantly (P < 0.05) to 0.43 +/- 0.62 mmHg(2)/Hz. To test for self-similarity before and after SCT, we analyzed data using a wavelet (i.e., functionally, a digital bandpass filter) tuned to be maximally sensitive to fluctuations with periods of approximately 2, 4, 8, 16, 32, or 64 s. In the control state, all fluctuations with periods of >/=4 s conformed to a "self-similar" (i.e., fractal) distribution. In marked contrast, the oscillations with a period of approximately 2 s (i.e., approximately 0.4 Hz) were significantly set apart from those at lower frequencies. One day and seven days after the complete SCT, however, the BP fluctuations at approximately 0.4 Hz now also conformed to the same self-similar behavior characteristic of the lower frequencies. We conclude that 1) an intact sympathetic nervous system endows that portion of the power spectrum centered around approximately 0.4 Hz with properties (e.g., a periodicity) that differ significantly from the self-similar behavior that characterizes the lower frequencies and 2) even within the relatively high frequency range at 0.4 Hz self-similarity is the "default" condition after sympathetic influences have been eliminated.


Assuntos
Pressão Sanguínea , Traumatismos da Medula Espinal/fisiopatologia , Animais , Análise de Fourier , Modelos Cardiovasculares , Oscilometria , Periodicidade , Ratos , Ratos Sprague-Dawley , Vértebras Torácicas
6.
Am J Physiol Heart Circ Physiol ; 284(5): H1793-9, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12521936

RESUMO

We examined the effects of chronic nicotine exposure and dietary salt on the arterial blood pressure (BP) changes learned in response to an acute behavioral stress in the Dahl salt-sensitive rat. Four groups were tested: low salt + vehicle; low salt + nicotine; high salt + vehicle; and high salt + nicotine. Rats were fed a low-salt (0.08% NaCl) or a high-salt (8% NaCl) diet for 4 wk; 2.4 mg. kg(-1). day(-1) nicotine or vehicle was given via an implanted osmotic minipump for the last 2 wk. All rats were conditioned by following one tone (CS+) with a 0.5-s tail shock; another tone (CS-) was never followed by shock. CS+ in low salt + vehicle and high salt + vehicle-treated rats evoked an initial arterial BP increase (C(1)), a component of the startle response, and an ensuing, smaller, but more sustained, pressor response (C(2)), which is acquired with training. In these rats, both C(1) and C(2) evoked by CS- were significantly smaller than those to CS+, demonstrating that these groups discriminated between the two tests. Conversely, although the low salt + nicotine-treated rats had both the C(1) and C(2) components of the conditional arterial pressure response, they did not discriminate between CS+ and CS-. Finally, the high salt + nicotine group failed to both discriminate between tones and acquire (i.e., learn) the C(2) response. The unconditional response to shock did not differ between groups. We conclude that combined exposure to high salt and to nicotine inhibits the salt-sensitive animal's acquisition of a learned conditional BP response, perhaps because nicotine acts preferentially on those central processes required for associative learning versus those involved in orientating to external stimuli.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Hipertensão/fisiopatologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Hipertensão/induzido quimicamente , Ratos , Ratos Endogâmicos Dahl , Fumar
7.
Am J Physiol Regul Integr Comp Physiol ; 284(3): R802-10, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12388454

RESUMO

This study explores the functional association between renal sympathetic nerve traffic (NT) and arterial blood pressure (BP) in the very-low-frequency range (i.e., <0.1 Hz). NT and BP (n = 6) or BP alone (n = 17) was recorded in unanesthetized rats (n = 6). Data were collected for 2-5 h, and wavelet transforms were calculated from data epochs of up to 1 h. From these transforms, we obtained probability distributions for fluctuation amplitudes over a range of time scales. We also computed the cross-wavelet power spectrum between NT and BP to detect the occurrence in time of large-amplitude transient events that may be important in the autonomic regulation of BP. Finally, we computed a time sequence of cross correlations between NT and BP to follow the relationship between NT and BP in time. We found that NT and BP follow comparable self-similar scaling relationships (i.e., NT and BP fluctuations exhibit a certain type of power law behavior). Scaling of this nature 1) points to underlying dynamics over a wide range of scales and 2) is related to large-amplitude events that contribute to the very-low-frequency variability of NT and BP. There is a strong correlation between NT and BP during many of these transient events. These strong correlations and the uniformity in scaling imply a functional connection between these two signals at frequencies where we previously found no connection using spectral coherence.


Assuntos
Pressão Sanguínea/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Eletrofisiologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
Am J Physiol Regul Integr Comp Physiol ; 283(3): R748-56, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12185010

RESUMO

This experiment quantified the initial disruption and subsequent adaptation of the blood pressure (BP)-heart rate (HR) relationship after spinal cord transection (SCT). BP and HR were recorded for 4 h via an implanted catheter in neurally intact, unanesthetized rats. The animals were then anesthetized, and their spinal cords were severed at T(1)-T(2) (n = 5) or T(4)-T(5) (n = 6) or sham lesioned (n = 4). BP was recorded for 4 h daily over the ensuing 6 days. The neurally intact rat showed a positive cross correlation, with HR leading BP at the peak by 1.8 +/- 0.8 (SD) s. The cross correlation in unanesthetized rats (n = 2) under neuromuscular blockade was also positive, with HR leading. After SCT at T(1)-T(2), the cross correlation became negative, with BP leading HR, and did not change during the next 6 days. The cross correlation also became negative 1-3 days after SCT at T(4)-T(5), but in four rats by day 6 and thereafter the cross correlation progressively reverted to a positive value. We propose that the positive cross correlation with HR leading BP in the intact rat results from an open-loop control that depends on intact supraspinal input to sympathetic preganglionic neurons in the spinal cord. After descending sympathetic pathways were severed at T(1)-T(2), the intact vagal pathway to the sinoatrial node dominated BP regulation via the baroreflex. We suggest that reestablishment of the positive correlation after SCT at T(4)-T(5) was attributable to the surviving sympathetic outflow to the heart and upper vasculature reasserting some effective function, perhaps in association with decreased spinal sympathetic hyperreflexia. The HR-BP cross correlation may index progression of sympathetic dysfunction in pathological processes.


Assuntos
Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Barorreflexo/fisiologia , Estado de Consciência , Sistema Nervoso Parassimpático/fisiologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...