Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797905

RESUMO

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

2.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597087

RESUMO

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

3.
Phys Rev E ; 102(2-1): 023210, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942378

RESUMO

This paper presents a study on hotspot parameters in indirect-drive, inertially confined fusion implosions as they proceed through the self-heating regime. The implosions with increasing nuclear yield reach the burning-plasma regime, hotspot ignition, and finally propagating burn and ignition. These implosions span a wide range of alpha heating from a yield amplification of 1.7-2.5. We show that the hotspot parameters are explicitly dependent on both yield and velocity and that by fitting to both of these quantities the hotspot parameters can be fit with a single power law in velocity. The yield scaling also enables the hotspot parameters extrapolation to higher yields. This is important as various degradation mechanisms can occur on a given implosion at fixed implosion velocity which can have a large impact on both yield and the hotspot parameters. The yield scaling also enables the experimental dependence of the hotspot parameters on yield amplification to be determined. The implosions reported have resulted in the highest yield (1.73×10^{16}±2.6%), yield amplification, pressure, and implosion velocity yet reported at the National Ignition Facility.

4.
Rev Sci Instrum ; 89(10): 10I138, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399709

RESUMO

An important diagnostic value of a shot at the National Ignition Facility is the resultant center-of-mass motion of the imploding capsule. This residual velocity reduces the efficiency of converting laser energy into plasma temperature. A new analysis method extracts the effective hot spot motion by using information from multiple neutron time-of-flight (nToF) lines-of-sight (LoSs). This technique fits a near Gaussian spectrum to the nToF scope traces and overcomes reliance on models to relate the plasma temperature to the mean energy of the emitted neutrons. This method requires having at least four nToF LoSs. The results of this analysis will be compared to an approach where each LoS is analyzed separately and a model is used to infer the mean energy of the emitted neutrons.

5.
Phys Rev Lett ; 121(13): 135001, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312055

RESUMO

To reach the pressures and densities required for ignition, it may be necessary to develop an approach to design that makes it easier for simulations to guide experiments. Here, we report on a new short-pulse inertial confinement fusion platform that is specifically designed to be more predictable. The platform has demonstrated 99%+0.5% laser coupling into the hohlraum, high implosion velocity (411 km/s), high hotspot pressure (220+60 Gbar), and high cold fuel areal density compression ratio (>400), while maintaining controlled implosion symmetry, providing a promising new physics platform to study ignition physics.

6.
Rev Sci Instrum ; 87(11): 11E327, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910341

RESUMO

The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

7.
Rev Sci Instrum ; 87(11): 11E715, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910388

RESUMO

The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

8.
Phys Rev E ; 94(2-1): 021202, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627237

RESUMO

An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T_{ion} are observed and the difference is seen to increase with increasing apparent DT T_{ion}. The line-of-sight rms variations of both DD and DT T_{ion} are small, ∼150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T_{ion}. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T_{ion} greater than the DD T_{ion}, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.

9.
Phys Rev Lett ; 115(10): 105001, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382681

RESUMO

Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

10.
Phys Rev Lett ; 114(25): 255003, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26197131

RESUMO

Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

11.
Rev Sci Instrum ; 85(11): 11E605, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430351

RESUMO

In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.

12.
Phys Rev Lett ; 111(8): 085004, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010449

RESUMO

Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

13.
Phys Rev Lett ; 110(7): 075001, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166377

RESUMO

The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.

14.
Phys Rev Lett ; 108(21): 215004, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003273

RESUMO

Ignition implosions on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision to keep the fuel entropy and adiabat low and ρR high. The first series of precision tuning experiments on the National Ignition Facility, which use optical diagnostics to directly measure the strength and timing of all four shocks inside a hohlraum-driven, cryogenic liquid-deuterium-filled capsule interior have now been performed. The results of these experiments are presented demonstrating a significant decrease in adiabat over previously untuned implosions. The impact of the improved shock timing is confirmed in related deuterium-tritium layered capsule implosions, which show the highest fuel compression (ρR~1.0 g/cm(2)) measured to date, exceeding the previous record [V. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] by more than a factor of 3. The experiments also clearly reveal an issue with the 4th shock velocity, which is observed to be 20% slower than predictions from numerical simulation.

15.
Phys Rev Lett ; 108(21): 215005, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003274

RESUMO

The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 µm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).

16.
Rev Sci Instrum ; 83(2): 023505, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380089

RESUMO

Collection of representative samples of debris following inertial confinement fusion implosions in order to diagnose implosion conditions and efficacy is a challenging endeavor because of the unique conditions within the target chamber such as unconverted laser light, intense pulse of x-rays, physical chunks of debris, and other ablative effects. We present collection of gas samples following an implosion for the first time. High collection fractions for noble gases were achieved. We also present collection of solid debris samples on flat plate collectors. Geometrical collection efficiencies for Au hohlraum material were achieved and collection of capsule debris (Be and Cu) was also observed. Asymmetric debris distributions were observed for Au and Be samples. Collection of Be capsule debris was higher for solid collectors viewing the capsule through the laser entrance hole in the hohlraum than for solid collectors viewing the capsule around the waist of the hohlraum. Collection of Au hohlraum material showed the opposite pattern: more Au debris was collected around the waist than through the laser entrance hole. The solid debris collectors were not optimized for minimal Cu backgrounds, which limited the conclusions about the symmetry of the Cu debris. The quality of the data limited conclusions on chemical fractionation effects within the burning, expanding, and then cooling plasma.

17.
Rev Sci Instrum ; 81(10): 10E304, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034003

RESUMO

The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other ablator rocket parameters have been measured using a single streaked x-ray radiograph. A regularization technique has been used to determine the ablator density profile ρ(r) at each time step; moments of ρ(r) then provide the areal density, average radius, and mass of the unablated, or remaining, ablator material, with the velocity determined from the time derivative of the average radius. The technique has been implemented on experiments at the OMEGA laser facility.

18.
Phys Rev Lett ; 104(13): 135002, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481889

RESUMO

A multidimensional measurable criterion for central ignition of inertial-confinement-fusion capsules is derived. The criterion accounts for the effects of implosion nonuniformities and depends on three measurable parameters: the neutron-averaged total areal density (rhoR(n)(tot)), the ion temperature (T(n)), and the yield over clean (YOC=ratio of the measured neutron yield to the predicted one-dimensional yield). The YOC measures the implosion uniformity. The criterion can be approximated by chi=(rhoR(n)(tot))(0.8) x (T(n)/4.7)(1.7)YOC(mu)>1 (where rhoR is in g cm(-2), T in keV, and mu approximately 0.4-0.5) and can be used to assess the performance of cryogenic implosions on the NIF and OMEGA. Cryogenic implosions on OMEGA have achieved chi approximately 0.02-0.03.

19.
Rev Sci Instrum ; 79(10): 10E525, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044506

RESUMO

A full range DT reaction history of an ignition capsule, from 10(9) to 10(20) neutronsns, offers the opportunity to diagnose fuel conditions hundreds of picoseconds before and during burn. The burn history begins with a sharp rise when the first shock reaches the center of the capsule. The level of this jump reflects the combined shock strength and the adiabat of DT fuel. Changes to the four laser pulses driving the capsule implosion which are large enough to degrade the yield make measurable changes to the reaction history. Low mode asymmetries grow during convergence but change the reaction history during the final approximately 100 ps. High mode asymmetry or turbulence mixing affects only the reaction history within approximately 50 ps of peak burn rate. A capsule with a tritium fuel layer containing a small amount of deuterium (approximately 1%) creates a reaction history similar to the ignition capsule, but without the final ignition burn. A combination of gas Cerenkov detectors and the neutron temporal diagnostic could be capable of diagnosing the full history of ignition and tritium rich capsules.

20.
Rev Sci Instrum ; 79(10): 10E913, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044568

RESUMO

A streaked radiography diagnostic has been proposed as a technique to determine the ablator mass remaining in an inertial confinement fusion ignition capsule at peak velocity. This instrument, the "HXRI-5," has been designed to fit within a National Ignition Facility Diagnostic Instrument Manipulator. The HXRI-5 will be built at Sandia National Laboratories (SNL), and initial testing will be done at the SNL Z-Beamlet Facility. In this paper, we will describe the National Ignition Campaign requirements for this diagnostic, the instrument design, and the planned test experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...