Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985865

RESUMO

The relation between the energy-dependent particle and wave descriptions of electron-matter interactions on the nanoscale was analyzed by measuring the delocalization of an evanescent field from energy-filtered amplitude images of sample/vacuum interfaces with a special aberration-corrected electron microscope. The spatial field extension coincided with the energy-dependent self-coherence length of propagating wave packets that obeyed the time-dependent Schrödinger equation, and underwent a Goos-Hänchen shift. The findings support the view that wave packets are created by self-interferences during coherent-inelastic Coulomb interactions with a decoherence phase close to Δφ = 0.5 rad. Due to a strictly reciprocal dependence on energy, the wave packets shrink below atomic dimensions for electron energy losses beyond 1000 eV, and thus appear particle-like. Consequently, our observations inevitably include pulse-like wave propagations that stimulate structural dynamics in nanomaterials at any electron energy loss, which can be exploited to unravel time-dependent structure-function relationships on the nanoscale.

2.
ACS Nano ; 11(3): 2734-2741, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28286954

RESUMO

Quaternary alloys are essential for the development of high-performance optoelectronic devices. However, immiscibility of the constituent elements can make these materials vulnerable to phase segregation, which degrades the optical and electrical properties of the solid. High-efficiency III-V photovoltaic cells are particularly sensitive to this degradation. InAlAsSb lattice matched to InP is a promising candidate material for high-bandgap subcells of a multijunction photovoltaic device. However, previous studies of this material have identified characteristic signatures of compositional variation, including anomalous low-energy photoluminescence. In this work, atomic-scale clustering is observed in InAlAsSb via quantitative scanning transmission electron microscopy. Image quantification of atomic column intensity ratios enables the comparison with simulated images, confirming the presence of nonrandom compositional variation in this multispecies alloy.

3.
Microsc Microanal ; 18(5): 982-94, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23083920

RESUMO

The TEAM 0.5 electron microscope is employed to demonstrate atomic resolution phase contrast imaging and focal series reconstruction with acceleration voltages between 20 and 300 kV and a variable dose rate. A monochromator with an energy spread of ≤0.1 eV is used for dose variation by a factor of 1,000 and to provide a beam-limiting aperture. The sub-Ångstrøm performance of the instrument remains uncompromised. Using samples obtained from silicon wafers by chemical etching, the [200] atom dumbbell distance of 1.36 Å can be resolved in single images and reconstructed exit wave functions at 300, 80, and 50 kV. At 20 kV, atomic resolution <2 Å is readily available but limited by residual lens aberrations at large scattering angles. Exit wave functions reconstructed from images recorded under low dose rate conditions show sharper atom peaks as compared to high dose rate. The observed dose rate dependence of the signal is explained by a reduction of beam-induced atom displacements. If a combined sample and instrument instability is considered, the experimental image contrast can be matched quantitatively to simulations. The described development allows for atomic resolution transmission electron microscopy of interfaces between soft and hard materials over a wide range of voltages and electron doses.

4.
Microsc Microanal ; 12(6): 492-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19830941

RESUMO

Planar defects in a polycrystalline diamond film were studied by high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy (STEM). In both modes, sub-Angstrom resolution was achieved by making use of two aberration-corrected systems; a TEM and a STEM C(s)-corrected microscope, each operated at 300 kV. For the first time, diamond in (110) zone-axis orientation was imaged in STEM mode at a resolution that allows for resolving the atomic dumbbells of carbon at a projected interatomic distance of 89 pm. Twin boundaries that show approximately the sigma3 CSL structure reveal at sub-Angstrom resolution imperfections; that is, local distortions, which break the symmetry of the ideal sigma3 type twin boundary, are likely present. In addition to these imperfect twin boundaries, voids on the atomic level were observed. It is proposed that both local distortions and small voids enhance the mechanical toughness of the film by locally increasing the critical stress intensity factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...