Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Adv Mater ; : e2313125, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629439

RESUMO

Self-sealing is one of the fascinating functions in nature that enables living material systems to respond immediately to damage. A prime plant model is Delosperma cooperi, which can rapidly self-seal damaged succulent leaves by systematically deforming until the wound closes. Inspired by this self-sealing principle, a novel programmable mechanical metamaterial has been developed to mimic the underlying damage management concept. This material is able to react autonomously to changes in its physical condition caused by an induced damage. To design this ability into the programmable metamaterial, a permeable unit cell design has been developed that can change size depending on the internal pressure. The parameter space and associated mechanical functionality of the unit cell design is simulated and analyzed under periodic boundary conditions and various pressures. The principles of self-sealing behavior in designed metamaterials are investigated, crack closure efficiency is identified for different crack lengths, the limitations of the proposed approach are discussed, and successful crack closure is experimentally demonstrated in the fabricated metamaterial. Although this study facilitates the first step on the way of integrating new bio-inspired principles in the metamaterials, the results show how programmable mechanical metamaterials might extend materials design space from pure properties to life-like abilities.

2.
Biomimetics (Basel) ; 9(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38392160

RESUMO

Wildfires are unplanned conflagrations perceived as a threat by humans. However, fires are essential for the survival of fire-adapted plants. On the one hand, wildfires cause major damage worldwide, burning large areas of forests and landscapes, threatening towns and villages, and generating high levels of air pollution. On the other hand, fire-adapted plants (pyrophytes) in the fire landscapes of the Earth are able to survive exposure to heat (e.g., because of their thick bark, which protects their living tissue) and benefit from fire directly (e.g., fire initiates cone opening and seed release) or indirectly (e.g., fewer competing plants of fire-sensitive species remain, seeds germinate in the ash-fertilized soil). We present the experimental set-up and results of a fire experiment on bark samples used as a basis to assess the fire tolerance of various trees. Fire tolerance is defined as the ability of a tree to survive a surface fire (up to 200 °C and 5 min duration). The measure of the fire tolerance for a tree species is the time taken for the vascular cambium under the insulating bark to reach the critical temperature of 60 °C. Within an educational module, we provide worksheets for teachers and students enabling them to analyze the fire tolerance of various tree barks.

3.
Biomimetics (Basel) ; 8(3)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504191

RESUMO

The first botanical gardens in Europe were established for the study of medicinal, poisonous, and herbal plants by students of medicine or pharmacy at universities. As the natural sciences became increasingly important in the 19th Century, botanical gardens additionally took on the role of public educational institutions. Since then, learning from living nature with the aim of developing technical applications, namely biomimetics, has played a special role in botanical gardens. Sir Joseph Paxton designed rainwater drainage channels in the roof of the Crystal Palace for the London World's Fair in 1881, having been inspired by the South American giant water lily (Victoria amazonica). The development of the Lotus-Effect® at the Botanical Garden Bonn was inspired by the self-cleaning leaf surfaces of the sacred lotus (Nelumbo nucifera). At the Botanic Garden Freiburg, a self-sealing foam coating for pneumatic systems was developed based on the self-sealing of the liana stems of the genus Aristolochia. Currently, botanical gardens are both research institutions and places of lifelong learning. Numerous botanical gardens provide biomimetics trails with information panels at each station for self-study and guided biomimetics tours with simple experiments to demonstrate the functional principles transferred from the biological model to the technical application. We present eight information panels suitable for setting up education about biomimetics and simple experiments to support guided garden tours about biomimetics.

4.
Biomimetics (Basel) ; 8(2)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37092425

RESUMO

Within the framework of a circular economy, we aim to efficiently use raw materials and reduce waste generation. In this context, the longevity of biomimetic material systems can significantly contribute by providing robustness and resilience of system functionality inspired by biological models. The aim of this review is to outline various principles that can lead to an increase in robustness (e.g., safety factor, gradients, reactions to environmental changes) and resilience (e.g., redundancy, self-repair) and to illustrate the principles with meaningful examples. The study focuses on plant material systems with a high potential for transfer to biomimetic applications and on existing biomimetic material systems. Our fundamental concept is based on the functionality of the entire system as a function of time. We use functionality as a dimensionless measure of robustness and resilience to quantify the system function, allowing comparison within biological material systems and biomimetic material systems, but also between them. Together with the enclosed glossary of key terms, the review provides a comprehensive toolbox for interdisciplinary teams. Thus, allowing teams to communicate unambiguously and to draw inspiration from plant models when developing biomimetic material systems with great longevity potential.

6.
Plants (Basel) ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987073

RESUMO

Faced with the environmental challenges posed by climate change, architects are creating nature-based solutions for urban areas, such as transforming living trees into artificial architectural structures. In this study, we have analyzed stem pairs of five tree species conjoined for more than eight years by measuring the stem diameters below and above the resulting inosculation and by calculating the respective diameter ratio. Our statistical analyses reveal that Platanus × hispanica and Salix alba stems do not differ significantly in diameter below inosculation. However, in contrast to P. × hispanica, the diameters of the conjoined stems above inosculation differ significantly in S. alba. We provide a binary decision tree based on diameter comparisons above and below inosculation as a straightforward tool for identifying the likelihood of full inosculation with water exchange. Moreover, we have compared branch junctions and inosculations by means of anatomical analyses, micro-computed tomography, and 3D reconstructions showing similarities in the formation of common annual rings that increase the capacity for water exchange. Due to the highly irregular cell arrangement in the center of the inosculations, cells cannot be assigned clearly to either of the stems. In contrast, cells in the center of branch junctions can always be attributed to one of the branches.

7.
Front Plant Sci ; 13: 950860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237506

RESUMO

Species with various reproductive modes accompanied by different mechanical properties of their (lateral) branch-branch junctions have evolved in the cactus subfamily Opuntioideae. Older branches of Opuntia ficus-indica with fracture-resistant junctions often bear flowers and fruits for sexual reproduction, whereas younger branches break off easily and provide offshoots for vegetative propagation. Cylindropuntia bigelovii plants are known for their vegetative reproduction via easily detachable branches that can establish themselves as offshoots. We characterized the elastic and fracture behaviors of these lateral junctions by tensile testing and analyzed local strains during loading. Additionally, we carried out finite element analyses to quantify the influence of five relevant tissue layers on joint elastic behavior. Our fracture analysis revealed various fracture modes: (i) most young samples of Opuntia ficus-indica failed directly at the junction and had smooth fracture surfaces, and relative fracture strain was on median 4% of the total strain; (ii) most older samples of Opuntia ficus-indica failed at the adjacent branch and exhibited rough fracture surfaces, and relative fracture strain was on median 47%; (iii) most samples of Cylindropuntia bigelovii abscised directly at the junction and exhibited cup and cone surfaces, and relative fracture strain was on median 28%. Various geometric and mechanical properties such as junction area, fracture energy, and tensile strength were analyzed with respect to significant differences between species and age of sample. Interestingly, the abscission of lateral branches naturally triggered by wind, passing animals, or vibration showed the following differences in maximum force: 153 N (older Opuntia ficus-indica), 51 N (young Opuntia ficus-indica), and 14 N (Cylindropuntia bigelovii).

8.
J R Soc Interface ; 19(191): 20220131, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730171

RESUMO

During the evolution of land plants many body plans have been developed. Differences in the cross-sectional geometry and tissue pattern of plant axes influence their flexural rigidity, torsional rigidity and the ratio of both of these rigidities, the so-called twist-to-bend ratio. For comparison, we have designed artificial cross-sections with various cross-sectional geometries and patterns of vascular bundles, collenchyma or sclerenchyma strands, but fixed percentages for these tissues. Our mathematical model allows the calculation of the twist-to-bend ratio by taking both cross-sectional geometry and tissue pattern into account. Each artificial cross-section was placed into a rigidity chart to provide information about its twist-to-bend ratio. In these charts, artificial cross-sections with the same geometry did not form clusters, whereas those with similar tissue patterns formed clusters characterized by vascular bundles, collenchyma or sclerenchyma arranged as one central strand, as a peripheral closed ring or as distributed individual strands. Generally, flexural rigidity increased the more the bundles or fibre strands were placed at the periphery. Torsional rigidity decreased the more the bundles or strands were separated and the less that they were arranged along a peripheral ring. The calculated twist-to-bend ratios ranged between 0.85 (ellipse with central vascular bundles) and 196 (triangle with individual peripheral sclerenchyma strands).


Assuntos
Modelos Teóricos
9.
J Exp Bot ; 73(4): 1236-1252, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34893822

RESUMO

Plants are exposed to various environmental stresses. Leaves immediately respond to mechano-stimulation, such as wind and touch, by bending and twisting or acclimate over a longer time period by thigmomorphogenetic changes of mechanical and geometrical properties. We selected the peltate leaves of Pilea peperomioides for a comparative analysis of mechano-induced effects on morphology, anatomy, and biomechanics of petiole and transition zone. The plants were cultivated for 6 weeks in a phytochamber divided into four treatment groups: control (no stimulus), touch stimulus (brushing every 30 s), wind stimulus (constant air flow of 4.6 m s-1), and a combination of touch and wind stimuli. Comparing the four treatment groups, neither the petiole nor the transition zone showed significant thigmomorphogenetic acclimations. However, comparing the petiole and the transition zone, the elastic modulus (E), the torsional modulus (G), the E/G ratio, and the axial rigidity (EA) differed significantly, whereas no significant difference was found for the torsional rigidity (GK). The twist-to-bend ratios (EI/GK) of all petioles ranged between 4.33 and 5.99, and of all transition zones between 0.67 and 0.78. Based on the twist-to-bend ratios, we hypothesize that bending loads are accommodated by the petiole, while torsional loads are shared between the transition zone and petiole.


Assuntos
Folhas de Planta , Vento , Aclimatação , Fenômenos Biomecânicos , Folhas de Planta/fisiologia , Plantas
10.
J Exp Bot ; 73(4): 1204-1221, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34849736

RESUMO

The European mistletoe (Viscum album) is an epiphytic hemiparasite that attaches to its host by an endophytic system. Two aspects are essential for its survival: the structural integrity of the host-parasite interface must be maintained during host growth and the functional integrity of the interface must be maintained during ontogeny and under mechanical stress. We investigated the mechanical properties of the mistletoe-host interaction. Intact and sliced mistletoe-host samples, with host wood as reference, were subjected to tensile tests up to failure. We quantified the rough fractured surface by digital microscopy and analysed local surface strains by digital image correlation. Tensile strength and deformation energy were independent of mistletoe age but exhibited markedly lower values than host wood samples. Cracks initiated at sites with a major strain of about 30%, especially along the mistletoe-host interface. The risk of sudden failure was counteracted by various sinkers and a lignification gradient that smooths the differences in the mechanical properties between the two species. Our results improve the understanding of the key mechanical characteristics of the host-mistletoe interface and show that the mechanical connection between the mistletoe and its host is age-independent. Thus, functional and structural integrity is ensured over the lifetime of the mistletoe.


Assuntos
Viscum album , Fenômenos Biomecânicos , Interações Hospedeiro-Parasita , Viscum album/química , Madeira
11.
Front Plant Sci ; 12: 765605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858462

RESUMO

From a mechanical viewpoint, petioles of foliage leaves are subject to contradictory mechanical requirements. High flexural rigidity guarantees support of the lamina and low torsional rigidity ensures streamlining of the leaves in wind. This mechanical trade-off between flexural and torsional rigidity is described by the twist-to-bend ratio. The safety factor describes the maximum load capacity. We selected four herbaceous species with different body plans (monocotyledonous, dicotyledonous) and spatial configurations of petiole and lamina (2-dimensional, 3-dimensional) and carried out morphological-anatomical studies, two-point bending tests and torsional tests on the petioles to analyze the influence of geometry, size and shape on their twist-to-bend ratio and safety factor. The monocotyledons studied had significantly higher twist-to-bend ratios (23.7 and 39.2) than the dicotyledons (11.5 and 13.3). High twist-to-bend ratios can be geometry-based, which is true for the U-profile of Hosta x tardiana with a ratio of axial second moment of area to torsion constant of over 1.0. High twist-to-bend ratios can also be material-based, as found for the petioles of Caladium bicolor with a ratio of bending elastic modulus and torsional modulus of 64. The safety factors range between 1.7 and 2.9, meaning that each petiole can support about double to triple the leaf's weight.

12.
Plants (Basel) ; 10(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34834679

RESUMO

The Opuntioideae include iconic cacti whose lateral branch-branch junctions are intriguing objects from a mechanical viewpoint. We have compared Opuntia ficus-indica, which has stable branch connections, with Cylindropuntia bigelovii, whose side branches abscise under slight mechanical stress. To determine the underlying structures and mechanical characteristics of these stable versus shedding cacti junctions, we conducted magnetic resonance imaging, morphometric and anatomical analyses of the branches and tensile tests of individual tissues. The comparison revealed differences in geometry, shape and material properties as follows: (i) a more pronounced tapering of the cross-sectional area towards the junctions supports the abscission of young branches of C. bigelovii. (ii) Older branches of O. ficus-indica form, initially around the branch-branch junctions, collar-shaped periderm tissue. This secondary coverage mechanically stiffens the dermal tissue, giving a threefold increase in strength and a tenfold increase in the elastic modulus compared with the epidermis. (iii) An approximately 200-fold higher elastic modulus of the vascular bundles of O. ficus-indica is a prerequisite for the stable junction of its young branches. Our results provide, for both biological and engineered materials systems, important insights into the geometric characteristics and mechanical properties of branching joints that are either stable or easily detachable.

13.
Front Plant Sci ; 12: 715711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616413

RESUMO

The European mistletoe (Viscum album) is a dioecious epiphytic evergreen hemiparasite that develops an extensive endophyte enabling the absorption of water and mineral salts from the host tree, whereas the exophytic leaves are photosynthetically active. The attachment mode and host penetration are well studied, but little information is available about the effects of mistletoe age and sex on haustorium-host interactions. We harvested 130 plants of Viscum album ssp. album growing on host branches of Aesculus flava for morphological and anatomical investigations. Morphometric analyses of the mistletoe and the (hypertrophied) host interaction site were correlated with mistletoe age and sex. We recorded the morphology of the endophytic systems of various ages by using X-ray microtomography scans and corresponding stereomicroscopic images. For detailed anatomical studies, we examined thin stained sections of the mistletoe-host interface by light microscopy. The diameter and length of the branch hypertrophy showed a positive linear correlation with the age of the mistletoe. Correlations with their sex were only found for ratios between host branch and hypertrophy size. A female bias of about 76% was found. In a 4-year-old mistletoe, several small, almost equally sized sinkers and the connected cortical strands extend over more than 5 cm within the host branch. In older mistletoes, one main sinker was predominant and occupied an increasingly large proportion of the stem cross-section. Bands of vessels ran along the axis of the wedge-shaped haustoria and sinkers and bent sideways toward the mistletoe-host interface. At the interface, the vascular elements of the host wood changed their direction and formed vortices near the haustorium.

14.
Sci Rep ; 11(1): 21232, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707194

RESUMO

During biological evolution, plants have developed a wide variety of body plans and concepts that enable them to adapt to changing environmental conditions. The trade-off between flexural and torsional rigidity is an important example of sometimes conflicting mechanical requirements, the adaptation to which can be quantified by the dimensionless twist-to-bend ratio. Our study considers the triangular flower stalk of Carex pendula, which shows the highest twist-to-bend ratios ever measured for herbaceous plant axes. For an in-depth understanding of this peak value, we have developed geometric models reflecting the 2D setting of triangular cross-sections comprised of a parenchymatous matrix with vascular bundles surrounded by an epidermis. We analysed the mathematical models (using finite elements) to measure the effect of either reinforcements of the epidermal tissue or fibre reinforcements such as collenchyma and sclerenchyma on the twist-to-bend ratio. The change from an epidermis to a covering tissue of corky periderm increases both the flexural and the torsional rigidity and decreases the twist-to-bend ratio. Furthermore, additional individual fibre reinforcement strands located in the periphery of the cross-section and embedded in a parenchymatous ground tissue lead to a strong increase of the flexural and a weaker increase of the torsional rigidity and thus resulted in a marked increase of the twist-to-bend ratio. Within the developed model, a reinforcement by 49 sclerenchyma fibre strands or 24 collenchyma fibre strands is optimal in order to achieve high twist-to-bend ratios. Dependent on the mechanical quality of the fibres, the twist-to-bend ratio of collenchyma-reinforced axes is noticeably smaller, with collenchyma having an elastic modulus that is approximately 20 times smaller than that of sclerenchyma. Based on our mathematical models, we can thus draw conclusions regarding the influence of mechanical requirements on the development of plant axis geometry, in particular the placement of reinforcements.


Assuntos
Carex (Planta)/anatomia & histologia , Fenômenos Mecânicos , Modelos Teóricos , Componentes Aéreos da Planta/anatomia & histologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Componentes Aéreos da Planta/fisiologia
15.
Biomimetics (Basel) ; 6(4)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34698061

RESUMO

During the last few decades, biomimetics has attracted increasing attention in both basic and applied research and in various fields of industry and building construction [...].

16.
Biomimetics (Basel) ; 6(3)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34449558

RESUMO

Biomimetics is an interdisciplinary field of science that deals with the analysis and systematic transfer of biological insights into technical applications. Moreover, the development of biomimetic products helps to improve our understanding of biological concept generators (reverse biomimetics). What does this mean for the education of kindergarten children, pupils, students, teachers, and others interested in biomimetics? The challenge of biomimetics is to have a solid knowledge base in the scientific disciplines involved and the competency to be open-minded enough to develop innovative solutions. This apparently contradictory combination ensures the transfer of knowledge from biology to engineering and vice versa on the basis of a common language that is perfectly understandable to everyone, e.g., the language of models, algorithms, and complete mathematical formulations. The opportunity within biomimetics is its ability to arouse student interest in technology via the fascination inherent in biological solutions and to awaken enthusiasm for living nature via the understanding of technology. Collaboration in working groups promotes professional, social, and personal skills. The variety of biomimetics is mirrored by the large number of educational modules developed with respect to existing biomimetic products and methods.

17.
Biomimetics (Basel) ; 6(3)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206585

RESUMO

The abstraction and implementation of plant movement principles into biomimetic compliant systems are of increasing interest for technical applications, e.g., in architecture, medicine, and soft robotics. Within the respective research and development approaches, advanced methods such as 4D printing or 3D-braiding pultrusion are typically used to generate proof-of-concept demonstrators at the laboratory or demonstrator scale. However, such techniques are generally time-consuming, complicated, and cost-intensive, which often impede the rapid realization of a sufficient number of demonstrators for testing or teaching. Therefore, we have produced comparable simple handcrafted compliant systems based on paper, wood, plastic foil, and/or glue as construction materials. A variety of complex plant movement principles have been transferred into these low-cost physical demonstrators, which are self-actuated by shrinking processes induced by the anisotropic hygroscopic properties of wood or paper. The developed systems have a high potential for fast, precise, and low-cost abstraction and transfer processes in biomimetic approaches and for the "hands-on understanding" of plant movements in applied university and school courses.

18.
Biomimetics (Basel) ; 6(2)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071936

RESUMO

Since most plant movements take place through an interplay of elastic deformation and strengthening tissues, they are thus ideal concept generators for biomimetic hingeless actuators. In the framework of a biomimetic biology push process, we present the transfer of the functional movement principles of hollow tubular geometries that are surrounded by a net-like structure. Our plant models are the recent genera Ochroma (balsa) and Carica (papaya) as well as the fossil seed fern Lyginopteris oldhamia, which hold a net of macroscopic fiber structures enveloping the whole trunk. Asymmetries in these fiber nets, which are specifically caused by asymmetric growth of the secondary wood, enable the up-righting of inclined Ochroma and Carica stems. In a tubular net-like structure, the fiber angles play a crucial role in stress-strain relationships. When braided tubes are subjected to internal pressure, they become shorter and thicker if the fiber angle is greater than 54.7°. However, if the fiber angle is less than 54.7°, they become longer and thinner. In this article, we use straightforward functional demonstrators to show how insights into functional principles from living nature can be transferred into plant-inspired actuators with linear or asymmetric deformation.

19.
Plants (Basel) ; 10(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920846

RESUMO

Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole-lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term "petiole-lamina transition zone" to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size.

20.
New Phytol ; 231(3): 950-956, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33864693

RESUMO

Learning from living organisms has emerged from a mainly curiosity-driven examination, where helpful functions of biological structures have been copied, into systematic biomimetic approaches that transfer a targeted function and its underlying principles from the biological model to a technical product. Plant biomimetics is based on functional morphology, which combines the knowledge gained from the morphology, anatomy and mechanics of plants and makes a statement about their form-structure-function relationship. Since the functional morphology of plants has become key to biomimetic applications, we present its central role in deciphering the functional principles that can be applied to engineering solutions. We consider that the future of biomimetics will include bioinspired developments that will contribute to better sustainability than that achieved by conventional products.


Assuntos
Biomimética , Plantas , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...