Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(27): 31044-31053, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35776551

RESUMO

We present the prototype of a ferroelectric tunnel junction (FTJ), which is based on a self-assembled monolayer (SAM) of small, functional molecules. These molecules have a structure similar to those of liquid crystals, and they are embedded between two solid-state electrodes. The SAM, which is deposited through a short sequence of simple fabrication steps, is extremely thin (3.4 ± 0.5 nm) and highly uniform. The functionality of the FTJ is ingrained in the chemical structure of the SAM components: a conformationally flexible dipole that can be reversibly reoriented in an electrical field. Thus, the SAM acts as an electrically switchable tunnel barrier. Fabricated stacks of Al/Al2O3/SAM/Pb/Ag with such a polar SAM show pronounced hysteretic, reversible conductance switching at voltages in the range of ±2-3 V, with a conductance ratio of the low and the high resistive states of up to 100. The switching mechanism is analyzed using a combination of quantum chemical, molecular dynamics, and tunneling resistance calculation methods. In contrast to more common, inorganic material-based FTJs, our approach using SAMs of small organic molecules allows for a high degree of functional complexity and diversity to be integrated by synthetic standard methods, while keeping the actual device fabrication process robust and simple. We expect that this technology can be further developed toward a level that would then allow its application in the field of information storage and processing, in particular for in-memory and neuromorphic computing architectures.

2.
Nano Lett ; 21(6): 2666-2674, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689381

RESUMO

In this work, native GaOx is positioned between bulk gallium and degenerately doped p-type silicon (p+-Si) to form Ga/GaOx/SiOx/p+-Si junctions. These junctions show memristive behavior, exhibiting large current-voltage hysteresis. When cycled between -2.5 and 2.5 V, an abrupt insulator-metal transition is observed that is reversible when the polarity is reversed. The ON/OFF ratio between the high and low resistive states in these junctions can reach values on the order of 108 and retain the ON and OFF resistive states for up to 105 s with an endurance exceeding 100 cycles. The presence of a nanoscale layer of gallium oxide is critical to achieving reversible resistive switching by formation and dissolution of the gallium filament across the switching layer.

3.
J Am Chem Soc ; 141(25): 9872-9878, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194525

RESUMO

We describe the self-assembly of gold and iron oxide nanoparticles regulated by a chemical reaction cycle that hydrolyzes a carbodiimide-based fuel. In a reaction with the chemical fuel, the nanoparticles are chemically activated to a state that favors assembling into clusters. The activated state is metastable and decays to the original precursor reversing the assembly. The dynamic interplay of activation and deactivation results in a material of which the behavior is regulated by the amount of fuel added to the system; they either did not assemble, assembled transiently, or assembled permanently in kinetically trapped clusters. Because of the irreversibility of the kinetically trapped clusters, we found that the behavior of the self-assembly was prone to hysteresis effects. The final state of the system in the energy landscape depended on the pathway of preparation. For example, when a large amount of fuel was added at once, the material would end up kinetically trapped in a local minimum. When the same amount of fuel was added in small batches with sufficient time for the system to re-equilibrate, the final state would be the global minimum. A better understanding of pathway complexity in the energy landscape is crucial for the development of fuel-driven supramolecular materials.

5.
Nano Lett ; 16(8): 5135-42, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458736

RESUMO

Surface effects strongly dominate the intrinsic properties of semiconductor nanowires (NWs), an observation that is commonly attributed to the presence of surface states and their modification of the electronic band structure. Although the effects of the exposed, bare NW surface have been widely studied with respect to charge carrier transport and optical properties, the underlying electronic band structure, Fermi level pinning, and surface band bending profiles are not well explored. Here, we directly and quantitatively assess the Fermi level pinning at the surfaces of composition-tunable, intrinsically n-type InGaAs NWs, as one of the prominent, technologically most relevant NW systems, by using correlated photoluminescence (PL) and X-ray photoemission spectroscopy (XPS). From the PL spectral response, we reveal two dominant radiative recombination pathways, that is, direct near-band edge transitions and red-shifted, spatially indirect transitions induced by surface band bending. The separation of their relative transition energies changes with alloy composition by up to more than ∼40 meV and represent a direct measure for the amount of surface band bending. We further extract quantitatively the Fermi level to surface valence band maximum separation using XPS, and directly verify a composition-dependent transition from downward to upward band bending (surface electron accumulation to depletion) with increasing Ga-content x(Ga) at a crossover near x(Ga) ∼ 0.2. Core level spectra further demonstrate the nature of extrinsic surface states being caused by In-rich suboxides arising from the native oxide layer at the InGaAs NW surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...