Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235572

RESUMO

Poleward winters commonly expose animals, including fish, to frigid temperatures and low food availability. Fishes that remain active over winter must therefore balance trade-offs between conserving energy and maintaining physiological performance in the cold, yet the extent and underlying mechanisms of these trade-offs are not well understood. We investigated the metabolic plasticity of brook char (Salvelinus fontinalis), a temperate salmonid, from the biochemical to whole-animal level in response to cold and food deprivation. Acute cooling (1°C day-1) from 14°C to 2°C had no effect on food consumption but reduced activity by 77%. We then assessed metabolic performance and demand over 90 days with exposure to warm (8°C) or cold winter (2°C) temperatures while fish were fed or starved. Resting metabolic rate (RMR) decreased substantially during initial cooling from 8°C to 2°C (Q10=4.2-4.5) but brook char exhibited remarkable thermal compensation during acclimation (Q10=1.4-1.6). Conversely, RMR was substantially lower (40-48%) in starved fish, conserving energy. Thus, the absolute magnitude of thermal plasticity may be masked or modified under food restriction. This reduction in RMR was associated with atrophy and decreases in in vivo protein synthesis rates, primarily in non-essential tissues. Remarkably, food deprivation had no effect on maximum oxygen uptake rates and thus aerobic capacity, supporting the notion that metabolic capacity can be decoupled from RMR in certain contexts. Overall, our study highlights the multi-faceted energetic flexibility of Salvelinus spp. that likely contributes to their success in harsh and variable environments and may be emblematic of winter-active fishes more broadly.


Assuntos
Salmonidae , Animais , Consumo de Oxigênio/fisiologia , Oxigênio , Temperatura , Aclimatação/fisiologia , Truta/fisiologia
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220488, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38186278

RESUMO

Conspecifics of the same age and size differ consistently in the pace with which they expend energy. This among-individual variation in metabolic rate is thought to influence behavioural variation, since differences in energy requirements should motivate behaviours that facilitate energy acquisition, such as being bold or active in foraging. While there is evidence for links between metabolic rate and behaviour in constant environments, we know little about whether metabolic rate and behaviour change together when the environment changes-that is, if metabolic and behavioural plasticity co-vary. We investigated this using a fish that becomes dormant in winter and strongly reduces its activity when the environment cools, the cunner (Tautogolabrus adspersus). We found strong and predictable among-individual variation in thermal plasticity of metabolic rates, from resting to maximum levels, but no evidence for among-individual variation in thermal plasticity of movement activity, meaning that these key physiological and behavioural traits change independently when the environment changes. The strong among-individual variation in metabolic rate plasticity resulted in much higher repeatability (among-individual consistency) of metabolic rates at warm than cold temperatures, indicating that the potential for metabolic rate to evolve under selection is temperature-dependent, as repeatability can set the upper limit to heritability. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Assuntos
Temperatura Baixa , Peixes , Animais , Evolução Biológica , Causalidade , Temperatura , Metabolismo Energético/fisiologia
3.
J Exp Biol ; 227(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38044850

RESUMO

Winter cold slows ectotherm physiology, potentially constraining activities and ecological opportunities at poleward latitudes. Yet, many fishes are winter-active, facilitated by thermal compensation that improves cold performance. Conversely, winter-dormant fishes (e.g. cunner, Tautogolabrus adspersus) become inactive and non-feeding overwinter. Why are certain fishes winter-dormant? We hypothesized that winter dormancy is an adaptive behavioural response arising in poleward species that tolerate severe, uncompensated constraints of cold on their physiological performance. We predicted that below their dormancy threshold of 7--8°C, exercise and metabolic performance of cunner are greatly decreased, even after acclimation (i.e. shows above-normal, uncompensated thermal sensitivity, Q10>1-3). We measured multiple key performance metrics (e.g. C-start maximum velocity, chase swimming speed, aerobic scope) in cunner after acute exposure to 26-2°C (3°C intervals using 14°C-acclimated fish) or acclimation (5-8 weeks) to 14-2°C (3°C intervals bracketing the dormancy threshold). Performance declined with cooling, and the acute Q10 of all six performance rate metrics was significantly greater below the dormancy threshold temperature (Q10,acute8-2°C=1.5-4.9, mean=3.3) than above (Q10,acute14-8°C=1.1-1.9, mean=1.5), inferring a cold constraint. However, 2°C acclimation (temporally more relevant to seasonal cooling) improved performance, abolishing the acute constraint (Q10,acclimated8-2°C=1.4-3.0, mean=2.0; also cf. Q10,acclimated14-8°C=1.2-2.9, mean=1.7). Thus, dormant cunner show partial cold-compensation of exercise and metabolic performance, similar to winter-active species. However, responsiveness to C-start stimuli was greatly cold-constrained even following acclimation, suggesting dormancy involves sensory limitation. Thermal constraints on metabolic and exercise physiology are not significant drivers of winter dormancy in cunner. In fact, compensatory plasticity at frigid temperatures is retained even in a dormant fish.


Assuntos
Perciformes , Animais , Perciformes/fisiologia , Temperatura , Temperatura Baixa , Peixes/fisiologia , Aclimatação/fisiologia
4.
Aquat Toxicol ; 262: 106667, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37619397

RESUMO

Temperate freshwater fishes can experience large seasonal temperature fluctuations that could affect their exposure and sensitivity to trace metals. Yet, temperature effects are overlooked in ecotoxicology studies, especially for cold temperatures typical of the winter. In the present study, the effects of long-term cold acclimation on Cd bioaccumulation and toxicity were investigated in a freshwater fish, the banded killifish (Fundulus diaphanus). Killifish were acclimated to 14 °C or gradually cooled (2 °C/week) to 4 °C and cold acclimated for 6 weeks. Then, both acclimation groups were exposed to environmentally realistic waterborne Cd concentrations (0, 0.5 or 5 µg Cd L-1) for a further 28 d at their respective acclimation temperatures. Tissue metal bioaccumulation, fish survival, condition, and markers of oxidative and ionoregulation stress, were measured after 0, 2, 5 and 28 days of Cd exposure. Cadmium tissue accumulation increased over the exposure duration and was typically lower in cold-acclimated fish. In agreement with this lower bioaccumulation, fewer Cd toxic effects were observed in cold-acclimated fish. There was little evidence of a difference in intrinsic Cd sensitivity between 4 °C- and 14 °C-acclimated fish, as Cd toxicity appeared to closely follow Cd bioaccumulation. Our study suggests that current environmental water quality guidelines would be protective in the winter for the abundant and ecologically-important banded killifish.


Assuntos
Fundulidae , Peixes Listrados , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Bioacumulação , Estações do Ano , Poluentes Químicos da Água/toxicidade , Aclimatação
5.
Mar Pollut Bull ; 191: 114976, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37137253

RESUMO

Despite their potential vulnerability to oil spills, little is known about the physiological effects of petroleum exposure and spill responses in cold-water marine animal larvae. We investigated the effects of physically dispersed (water-accommodated fraction, WAF) and chemically dispersed (chemically enhanced WAF, CEWAF; using Slickgone EW) conventional heavy crude oil on the routine metabolic rate and heart rate of stage I larval American lobster (Homarus americanus). We found no effects of 24-h exposure to sublethal concentrations of crude oil WAF or CEWAF at 12 °C. We then investigated the effect of sublethal concentrations of WAFs at three environmentally relevant temperatures (9, 12, 15 °C). The highest WAF concentration increased metabolic rate at 9 °C, whereas it decreased heart rate and increased mortality at 15 °C. Overall, metabolic and cardiac function of American lobster larvae is relatively resilient to conventional heavy crude oil and Slickgone EW exposure, but responses to WAF may be temperature-dependent.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Petróleo/análise , Nephropidae , Larva/metabolismo , Temperatura , Poluentes Químicos da Água/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Água
6.
J Exp Biol ; 225(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36000268

RESUMO

Migratory fishes commonly encounter large and rapid thermal variation, which has the potential to disrupt essential physiological functions. Thus, we acclimated wild, migratory Arctic char to 13°C (∼7°C above a summer average) for an ecologically relevant period (3 days) and measured maximum heart rate (ƒH,max) during acute warming to determine their ability to rapidly improve cardiac function at high temperatures. Arctic char exhibited rapid compensatory cardiac plasticity similar to past observations following prolonged warm acclimation: they reduced ƒH,max over intermediate temperatures (-8%), improved their ability to increase ƒH,max during warming (+10%), and increased (+1.3°C) the temperature at the onset of an arrhythmic heartbeat, a sign of cardiac failure. This rapid cardiac plasticity may help migrating fishes such as Arctic char mitigate short-term thermal challenges. Furthermore, by using mobile Arctic research infrastructure in a remote field location, the present study illustrates the potential for field-based, experimental physiology in such locations.


Assuntos
Aclimatação , Truta , Aclimatação/fisiologia , Animais , Regiões Árticas , Coração/fisiologia , Temperatura , Truta/fisiologia
7.
Environ Toxicol Chem ; 41(8): 1967-1976, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622057

RESUMO

The offshore oil industry in Atlantic Canada necessitates a greater understanding of the potential impacts of oil exposure and spill response measures on cold-water marine species. We used a standardized scoring index to characterize sublethal developmental impacts of physically and chemically dispersed crude oil in early life stages of Atlantic cod (Gadus morhua) and assessed intraspecific variation in the response among cod families. Cod (origin: Scotian Shelf, Canada) were laboratory-crossed to produce embryos from five specific families, which were subsequently exposed prehatch to gradient dilutions of a water-accommodated fraction (WAF) and a chemically enhanced WAF (CEWAF; prepared with Corexit 9500A) for 24 h. Postexposure, live embryos were transferred into filtered seawater and monitored to hatch; then, all live fish had sublethal endpoints assessed using the blue-sac disease (BSD) severity index. In both WAF and CEWAF groups, increasing exposure concentrations (measured as total petroleum hydrocarbons) resulted in an increased incidence of BSD symptoms (impaired swimming ability, increased degree of spinal curvature, yolk-sac edemas) in cod across all families. This positive concentration-dependent increase in BSD was similar between physically (WAF) versus chemically (CEWAF) dispersed oil exposures, indicating that dispersant addition does not exacerbate the effect of crude oil on BSD incidence in cod. Sensitivity varied between families, with some families having less BSD than others with increasing exposure concentrations. To our knowledge, our study is the first to demonstrate the occurrence in fishes of intraspecific variation among families in sublethal responses to oil and dispersant exposure. Our results suggest that sublethal effects of crude oil exposure will not be uniformly observed across cod populations and that sensitivity depends on genetic background. Environ Toxicol Chem 2022;41:1967-1976. © 2022 SETAC.


Assuntos
Gadus morhua , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Peixes/fisiologia , Lipídeos/química , Petróleo/análise , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/análise , Água , Poluentes Químicos da Água/toxicidade
8.
J Exp Biol ; 225(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35315489

RESUMO

Winter dormancy is a seasonal survival strategy common among temperate ectotherms, characterized by inactivity, fasting and low metabolic rates. Previous reports of metabolic rate depression (MRD) in winter-dormant ectotherms, including many fishes, may have resulted from confounding influences of temperature-dependent variation in activity on metabolic rate measurements. We hypothesize that, as demonstrated recently in the winter-dormant cunner (Tautogolabrus adspersus), inactivity and the passive physicochemical (Arrhenius) effect of cold on standard metabolic rate (SMR) are the common primary mechanisms underlying the low metabolic rates among winter-dormant fishes. Using automated video tracking, we investigated threshold temperatures for winter dormancy onset (major reductions in activity, increased sheltering and fasting) in four phylogenetically diverse teleost species reported to be winter dormant: cunner, pumpkinseed sunfish (Lepomis gibbosus), American eel (Anguilla rostrata) and mummichog (Fundulus heteroclitus). All species showed large activity and feeding reductions, but the magnitude of change and dormancy threshold temperature was species-specific. We propose that a continuum of overwintering responses exists among fishes from dormant to lethargic to active. The relationship between activity and metabolic rate was then measured using video-recorded automated respirometry during acute cooling and following cold acclimation in pumpkinseed, mummichog and eel. In all species, activity and metabolic rate were strongly correlated at all temperatures, and cooling caused reduced activity and metabolic rate. When variation in activity was controlled for across temperatures spanning the dormancy thresholds, the thermal sensitivity of metabolic rate including SMR indicated the predominance of passive physicochemical influences (mean Q10<3.5), rather than active MRD. Activity reductions and physicochemical slowing of metabolism owing to cold appear to be the primary energy-saving mechanisms in overwintering fishes.


Assuntos
Temperatura Baixa , Perciformes , Animais , Metabolismo Energético , Peixes/fisiologia , Perciformes/fisiologia , Estações do Ano , Temperatura
9.
J Fish Biol ; 98(6): 1524-1535, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33349944

RESUMO

Freshwater fish face a variety of spatiotemporal thermal challenges throughout their life. On a broad scale, temperature is an important driver of physiological, behavioural and ecological patterns and ultimately affects populations and overall distribution. These broad patterns are partly underpinned by the small-scale local effects of temperature on individuals within the population. Climate change is increasing the range of daily thermal variation in most freshwater ecosystems, altering behaviour and performance of resident fishes. The aim of this review is understanding how daily thermal variation in temperate rivers affects individual fish physiology, behaviour and overall performance. The following are highlighted in this study: (a) the physical characteristics of rivers that can either buffer or exacerbate thermal variability, (b) the effects of thermal variability on growth and metabolism, (c) the approaches for quantifying thermal variation and thermal stress and (d) how fish may acclimatize or adapt to our changing climate.


Assuntos
Mudança Climática , Ecossistema , Animais , Peixes , Água Doce , Rios , Temperatura
11.
J Therm Biol ; 93: 102732, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33077143

RESUMO

The critical thermal maximum (CTMAX) is the temperature at which animals exhibit loss of motor response because of a temperature-induced collapse of vital physiological systems. A central mechanism hypothesised to underlie the CTMAX of water-breathing ectotherms is insufficient tissue oxygen supply for vital maintenance functions because of a temperature-induced collapse of the cardiorespiratory system. The CTMAX of species conforming to this hypothesis should decrease with declining water oxygen tension (PO2) because they have oxygen-dependent upper thermal limits. However, recent studies have identified a number of fishes and crustaceans with oxygen-independent upper thermal limits, their CTMAX unchanged in progressive aquatic hypoxia. The previous studies, which were performed separately on cold-water, temperate and tropical species, suggest the oxygen-dependence of upper thermal limits and the acute thermal sensitivity of the cardiorespiratory system increases with decreasing habitat temperature. Here we directly test this hypothesis by assessing the oxygen-dependence of CTMAX in the polar Antarctic krill (Euphausia superba), as well as the temperate Baltic prawn (Palaemon adspersus) and brown shrimp (Crangon crangon). We found that P. adspersus and C. crangon maintain CTMAX in progressive hypoxia down to 40 mmHg, and that only E. superba have oxygen-dependent upper thermal limits at normoxia. In E. superba, the observed decline in CTMAX with water PO2 is further supported by heart-rate measurements showing a plateauing, and subsequent decline and collapse of heart performance at CTMAX. Our results support the hypothesis that the oxygen-dependence of upper thermal limits in water-breathing ectotherms and the acute thermal sensitivity of their cardiorespiratory system increases with decreasing habitat temperature.


Assuntos
Ecossistema , Euphausiacea/fisiologia , Oxigênio/metabolismo , Termotolerância , Animais , Coração/fisiologia , Movimento , Consumo de Oxigênio , Respiração
12.
Nature ; 577(7790): 370-375, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915382

RESUMO

The partial pressure of CO2 in the oceans has increased rapidly over the past century, driving ocean acidification and raising concern for the stability of marine ecosystems1-3. Coral reef fishes are predicted to be especially susceptible to end-of-century ocean acidification on the basis of several high-profile papers4,5 that have reported profound behavioural and sensory impairments-for example, complete attraction to the chemical cues of predators under conditions of ocean acidification. Here, we comprehensively and transparently show that-in contrast to previous studies-end-of-century ocean acidification levels have negligible effects on important behaviours of coral reef fishes, such as the avoidance of chemical cues from predators, fish activity levels and behavioural lateralization (left-right turning preference). Using data simulations, we additionally show that the large effect sizes and small within-group variances that have been reported in several previous studies are highly improbable. Together, our findings indicate that the reported effects of ocean acidification on the behaviour of coral reef fishes are not reproducible, suggesting that behavioural perturbations will not be a major consequence for coral reef fishes in high CO2 oceans.


Assuntos
Recifes de Corais , Peixes/fisiologia , Animais , Comportamento Animal , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Oceanos e Mares
13.
J Exp Biol ; 222(Pt 19)2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31527178

RESUMO

Physiological mechanisms determining thermal limits in fishes are debated but remain elusive. It has been hypothesised that motor function loss, observed as loss of equilibrium during acute warming, is due to direct thermal effects on brain neuronal function. To test this, we mounted cooling plates on the heads of Atlantic cod (Gadus morhua) and quantified whether local brain cooling increased whole-organism acute upper thermal tolerance. Brain cooling reduced brain temperature by 2-6°C below ambient water temperature and increased thermal tolerance by 0.5 and 0.6°C on average relative to instrumented and uninstrumented controls, respectively, suggesting that direct thermal effects on brain neurons may contribute to setting upper thermal limits in fish. However, the improvement in thermal tolerance with brain cooling was small relative to the difference in brain temperature, demonstrating that other mechanisms (e.g. failure of spinal and peripheral neurons, or muscle) may also contribute to controlling acute thermal tolerance.


Assuntos
Aclimatação/fisiologia , Encéfalo/fisiologia , Temperatura Baixa , Gadus morhua/fisiologia , Animais , Reprodutibilidade dos Testes
15.
Proc Biol Sci ; 285(1886)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185640

RESUMO

Winter dormancy is used by many animals to survive the cold and food-poor high-latitude winter. Metabolic rate depression, an active downregulation of resting cellular energy turnover and thus standard (resting) metabolic rate (SMR), is a unifying strategy underlying the persistence of organisms in such energy-limited environments, including hibernating endotherms. However, controversy exists about its involvement in winter-dormant aquatic ectotherms. To address this debate, we conducted simultaneous, multi-day measurements of whole-animal oxygen consumption rate (a proxy of metabolic rate) and spontaneous movement in a model winter-dormant marine fish, the cunner (Tautogolabrus adspersus). Winter dormancy in cunner involved a dampened diel rhythm of metabolic rate, such that a low and stable metabolic rate persisted throughout the 24 h day. Based on the thermal sensitivity (Q10) of SMR as well as correlations of metabolic rate and movement, the reductions in metabolic rate were not attributable to metabolic rate depression, but rather to reduced activity under the cold and darkness typical of the winter refuge among substrate. Previous reports of metabolic rate depression in cunner, and possibly other fish species, during winter dormancy were probably confounded by variation in activity. Unlike hibernating endotherms, and excepting the few fish species that overwinter in anoxic waters, winter dormancy in fishes, as exemplified by cunner, need not involve metabolic rate depression. Rather, energy savings come from inactivity combined with passive physico-chemical effects of the cold on SMR, demonstrating that thermal effects on activity can greatly influence temperature-metabolism relationships, and illustrating the benefit of simply being still in energy-limited environments.


Assuntos
Temperatura Baixa , Metabolismo Energético , Estivação , Atividade Motora , Perciformes/fisiologia , Animais , Metabolismo Basal , Feminino , Masculino , Terra Nova e Labrador
16.
Physiol Biochem Zool ; 91(2): 788-796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29315031

RESUMO

Accumulation of trimethylamine N-oxide (TMAO) by deep-sea animals is proposed to protect proteins against the destabilizing effects of high hydrostatic pressure (the piezolyte hypothesis). Chondrichthyan fishes (sharks, rays, and chimaeras) provide a unique test of this hypothesis because shallow-living species have elevated TMAO levels to counteract the destabilizing effects of high urea levels accumulated for osmoregulation. Limited interspecific studies of chondrichthyans reveal that increasing depth correlates with decreased urea and increased TMAO levels, suggesting a dynamic balance between destabilizing forces on proteins (high urea, hydrostatic pressure) and TMAO to counteract these forces. Indeed, an inability to minimize urea levels or maximize TMAO levels has been proposed to explain why chondrichthyans are absent in the vast abyssal region. An unresolved question is whether the depth-related changes in chondrichthyan osmolytes are a flexible response to depth or whether phylogenetic differences in species-specific physiological set points for osmolytes account for the differences seen with depth. Sampling Arctic skates (Amblyraja hyperborea) across a 1,015-m depth gradient in the Beaufort Sea, we measured organic osmolytes in muscle using spectrophotometry and high-performance liquid chromatography. We found that the urea-to-TMAO ratio decreased linearly with depth, with tighter correlation than that seen in interspecific studies. Minor osmolytes, including betaine, sarcosine, and some α-amino acids, also declined with depth, apparently replaced (as with urea) by TMAO (a stronger piezolyte than those solutes). These data provide the first intraspecific evidence that flexible adjustments of osmolyte combinations are a key response for deep-sea living in individual chondrichthyans, supporting the piezolyte hypothesis.


Assuntos
Adaptação Fisiológica/fisiologia , Osmorregulação/fisiologia , Rajidae/fisiologia , Animais , Regiões Árticas , Pressão Hidrostática , Oceanos e Mares
18.
J Exp Biol ; 220(Pt 19): 3519-3526, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754716

RESUMO

Theoretical models predict that ocean acidification, caused by increased dissolved CO2, will reduce the maximum thermal limits of fishes, thereby increasing their vulnerability to rising ocean temperatures and transient heatwaves. Here, we tested this prediction in three species of damselfishes on the Great Barrier Reef, Australia. Maximum thermal limits were quantified using critical thermal maxima (CTmax) tests following acclimation to either present-day or end-of-century levels of CO2 for coral reef environments (∼500 or ∼1000 µatm, respectively). While species differed significantly in their thermal limits, whereby Dischistodus perspicillatus exhibited greater CTmax (37.88±0.03°C; N=47) than Dascyllus aruanus (37.68±0.02°C; N=85) and Acanthochromis polyacanthus (36.58±0.02°C; N=63), end-of-century CO2 had no effect (D. aruanus) or a slightly positive effect (increase in CTmax of 0.16°C in D. perspicillatus and 0.21°C in A. polyacanthus) on CTmax Contrary to expectations, early-stage juveniles were equally as resilient to CO2 as larger conspecifics, and CTmax was higher at smaller body sizes in two species. These findings suggest that ocean acidification will not impair the maximum thermal limits of reef fishes, and they highlight the critical role of experimental biology in testing predictions of theoretical models forecasting the consequences of environmental change.


Assuntos
Tamanho Corporal , Dióxido de Carbono/química , Mudança Climática , Perciformes/fisiologia , Água do Mar/química , Termotolerância , Animais , Recifes de Corais , Queensland
20.
J Comp Physiol B ; 186(6): 711-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27138338

RESUMO

Food limitation is a common challenge for animals. Cephalopods are sensitive to starvation because of high metabolic rates and growth rates related to their "live fast, die young" life history. We investigated how enzymatic capacities of key metabolic pathways are modulated during starvation in the common cuttlefish (Sepia officinalis) to gain insight into the metabolic organization of cephalopods and their strategies for coping with food limitation. In particular, lipids have traditionally been considered unimportant fuels in cephalopods, yet, puzzlingly, many species (including cuttlefish) mobilize the lipid stores in their digestive gland during starvation. Using a comprehensive multi-tissue assay of enzymatic capacities for energy metabolism, we show that, during long-term starvation (12 days), glycolytic capacity for glucose use is decreased in cuttlefish tissues, while capacities for use of lipid-based fuels (fatty acids and ketone bodies) and amino acid fuels are retained or increased. Specifically, the capacity to use the ketone body acetoacetate as fuel is widespread across tissues and gill has a previously unrecognized capacity for fatty acid catabolism, albeit at low rates. The capacity for de novo glucose synthesis (gluconeogenesis), important for glucose homeostasis, likely is restricted to the digestive gland, contrary to previous reports of widespread gluconeogenesis among cephalopod tissues. Short-term starvation (3-5 days) had few effects on enzymatic capacities. Similar to vertebrates, lipid-based fuels, putatively mobilized from fat stores in the digestive gland, appear to be important energy sources for cephalopods, especially during starvation when glycolytic capacity is decreased perhaps to conserve available glucose.


Assuntos
Decapodiformes/metabolismo , Metabolismo Energético , Aminoácidos/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Citrato (si)-Sintase/metabolismo , Ácidos Graxos/metabolismo , Frutose-Bifosfatase/metabolismo , Trato Gastrointestinal/metabolismo , Gluconeogênese , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicólise , Corpos Cetônicos/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Inanição/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...