Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671969

RESUMO

Migraine, recognized as a severe headache disorder, is widely prevalent, significantly impacting the quality of life for those affected. This article aims to provide a comprehensive review of the application of animal model technologies in unraveling the pathomechanism of migraine and developing more effective therapies. It introduces a variety of animal experimental models used in migraine research, emphasizing their versatility and importance in simulating various aspects of the condition. It details the benefits arising from the utilization of these models, emphasizing their role in elucidating pain mechanisms, clarifying trigeminal activation, as well as replicating migraine symptoms and histological changes. In addition, the article consciously acknowledges the inherent limitations and challenges associated with the application of animal experimental models. Recognizing these constraints is a fundamental step toward fine-tuning and optimizing the models for a more accurate reflection of and translatability to the human environment. Overall, a detailed and comprehensive understanding of migraine animal models is crucial for navigating the complexity of the disease. These findings not only provide a deeper insight into the multifaceted nature of migraine but also serve as a foundation for developing effective therapeutic strategies that specifically address the unique challenges arising from migraine pathology.

2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338981

RESUMO

The intestinal flora has been the focus of numerous investigations recently, with inquiries not just into the gastrointestinal aspects but also the pathomechanism of other diseases such as nervous system disorders and mitochondrial diseases. Mitochondrial disorders are the most common type of inheritable metabolic illness caused by mutations of mitochondrial and nuclear DNA. Despite the intensive research, its diagnosis is usually difficult, and unfortunately, treating it challenges physicians. Metabolites of the kynurenine pathway are linked to many disorders, such as depression, schizophrenia, migraine, and also diseases associated with impaired mitochondrial function. The kynurenine pathway includes many substances, for instance kynurenic acid and quinolinic acid. In this review, we would like to show a possible link between the metabolites of the kynurenine pathway and mitochondrial stress in the context of intestinal flora. Furthermore, we summarize the possible markers of and future therapeutic options for the kynurenine pathway in excitotoxicity and mitochondrial oxidative stress.


Assuntos
Microbioma Gastrointestinal , Doenças Mitocondriais , Doenças do Sistema Nervoso , Humanos , Cinurenina/metabolismo , Doenças do Sistema Nervoso/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Ácido Quinolínico/metabolismo , Estresse Oxidativo
3.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068897

RESUMO

Migraine is a primary headache disorder, which is an enormous burden to the healthcare system. While some aspects of the pathomechanism of migraines remain unknown, the most accepted theory is that activation and sensitization of the trigeminovascular system are essential during migraine attacks. In recent decades, it has been suggested that ion channels may be important participants in the pathogenesis of migraine. Numerous ion channels are expressed in the peripheral and central nervous systems, including the trigeminovascular system, affecting neuron excitability, synaptic energy homeostasis, inflammatory signaling, and pain sensation. Dysfunction of ion channels could result in neuronal excitability and peripheral or central sensitization. This narrative review covers the current understanding of the biological mechanisms leading to activation and sensitization of the trigeminovascular pain pathway, with a focus on recent findings on ion channel activation and modulation. Furthermore, we focus on the kynurenine pathway since this system contains kynurenic acid, which is an endogenous glutamate receptor antagonist substance, and it has a role in migraine pathophysiology.


Assuntos
Cinurenina , Transtornos de Enxaqueca , Humanos , Cinurenina/metabolismo , Transtornos de Enxaqueca/metabolismo , Canais Iônicos/metabolismo , Neurônios/metabolismo , Dor/metabolismo
4.
Neurol Int ; 15(3): 1174-1190, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37755364

RESUMO

Migraine, a prevalent neurological condition and the third most common disease globally, places a significant economic burden on society. Despite extensive research efforts, the precise underlying mechanism of the disease remains incompletely comprehended. Nevertheless, it is established that the activation and sensitization of the trigeminal system are crucial during migraine attacks, and specific substances have been recognized for their distinct involvement in the pathomechanism of migraine. Recently, an expanding body of data indicates that migraine attacks can be prevented and treated through dietary means. It is important to highlight that the various diets available pose risks for patients without professional guidance. This comprehensive overview explores the connection between migraine, the gut microbiome, and gastrointestinal disorders. It provides insight into migraine-triggering foods, and discusses potential diets to help reduce the frequency and severity of migraine attacks. Additionally, it delves into the benefits of using pre- and probiotics as adjunctive therapy in migraine treatment.

5.
Biomedicines ; 11(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36979924

RESUMO

Progressive multiple sclerosis (MS) is a chronic disease with a unique pattern, which is histologically classified into the subpial type 3 lesions in the autopsy. The lesion is also homologous to that of cuprizone (CPZ) toxin-induced animal models of demyelination. Aberration of the tryptophan (TRP)-kynurenine (KYN) metabolic system has been observed in patients with MS; nevertheless, the KYN metabolite profile of progressive MS remains inconclusive. In this study, C57Bl/6J male mice were treated with 0.2% CPZ toxin for 5 weeks and then underwent 4 weeks of recovery. We measured the levels of serotonin, TRP, and KYN metabolites in the plasma and the brain samples of mice at weeks 1, 3, and 5 of demyelination, and at weeks 7 and 9 of remyelination periods by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) after body weight measurement and immunohistochemical analysis to confirm the development of demyelination. The UHPLC-MS/MS measurements demonstrated a significant reduction of kynurenic acid, 3-hydoxykynurenine (3-HK), and xanthurenic acid in the plasma and a significant reduction of 3-HK, and anthranilic acid in the brain samples at week 5. Here, we show the profile of KYN metabolites in the CPZ-induced mouse model of demyelination. Thus, the KYN metabolite profile potentially serves as a biomarker of progressive MS and thus opens a new path toward planning personalized treatment, which is frequently obscured with immunologic components in MS deterioration.

6.
Cells ; 11(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36497053

RESUMO

Migraine is a complex neurovascular disorder, which causes intense socioeconomic problems worldwide. The pathophysiology of disease is enigmatic; accordingly, therapy is not sufficient. In recent years, migraine research focused on tryptophan, which is metabolized via two main pathways, the serotonin and kynurenine pathways, both of which produce neuroactive molecules that influence pain processing and stress response by disturbing neural and brain hypersensitivity and by interacting with molecules that control vascular and inflammatory actions. Serotonin has a role in trigeminal pain processing, and melatonin, which is another product of this pathway, also has a role in these processes. One of the end products of the kynurenine pathway is kynurenic acid (KYNA), which can decrease the overexpression of migraine-related neuropeptides in experimental conditions. However, the ability of KYNA to cross the blood-brain barrier is minimal, necessitating the development of synthetic analogs with potentially better pharmacokinetic properties to exploit its therapeutic potential. This review summarizes the main translational and clinical findings on tryptophan metabolism and certain neuropeptides, as well as therapeutic options that may be useful in the prevention and treatment of migraine.


Assuntos
Transtornos de Enxaqueca , Triptofano , Humanos , Triptofano/metabolismo , Serotonina/metabolismo , Cinurenina/metabolismo , Ácido Cinurênico , Redes e Vias Metabólicas , Dor
7.
Biomedicines ; 10(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551931

RESUMO

A migraine is a neurological condition that can cause multiple symptoms. It is up to three times more common in women than men, thus, estrogen may play an important role in the appearance attacks. Its exact pathomechanism is still unknown; however, the activation and sensitization of the trigeminal system play an essential role. We aimed to use an animal model, which would better illustrate the process of repeated episodic migraine attacks to reveal possible new mechanisms of trigeminal pain chronification. Twenty male (M) and forty ovariectomized (OVX) female adult rats were used for our experiment. Male rats were divided into two groups (M + SIF, M + IS), while female rats were divided into four groups (OVX + SIF, OVX + IS, OVX + E2 + SIF, OVX + E2 + IS); half of the female rats received capsules filled with cholesterol (OVX + SIF, OVX + IS), while the other half received a 1:1 mixture of cholesterol and 17ß-estradiol (OVX + E2 + SIF, OVX + E2 + IS). The animals received synthetic interstitial fluid (SIF) (M + SIF, OVX + SIF, OVX + E2 + SIF) or inflammatory soup (IS) (M + IS, OVX + IS, OVX + E2 + IS) treatment on the dural surface through a cannula for three consecutive days each week (12 times in total). Behavior tests and immunostainings were performed. After IS application, a significant decrease was observed in the pain threshold in the M + IS (0.001 < p < 0.5), OVX + IS (0.01 < p < 0.05), and OVX + E2 + IS (0.001 < p < 0.05) groups compared to the control groups (M + SIF; OVX + SIF, OVX + E2 + SIF). The locomotor activity of the rats was lower in the IS treated groups (M + IS, 0.01 < p < 0.05; OVX + IS, p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05), and these animals spent more time in the dark room (M + IS, p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.01). We found a significant difference between M + IS and OVX + E2 + IS groups (p < 0.05) in the behavior tests. Furthermore, IS increased the area covered by calcitonin gene-related peptide (CGRP) immunoreactive (IR) fibers (M + IS, p < 0.01; OVX + IS, p < 0.01; OVX + E2 + IS, p < 0.001) and the number of neuronal nitric oxide synthase (nNOS) IR cells (M + IS, 0.001< p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05) in the caudal trigeminal nucleus (TNC). There was no difference between M + IS and OVX + IS groups; however, the area was covered by CGRP IR fibers (0.01 < p < 0.05) and the number of nNOS IR cells was significantly higher in the OVX + E2 + IS (p < 0.05) group than the other two IS- (M + IS, OVX + IS) treated animals. Overall, repeated administration of IS triggers activation and sensitization processes and develops nociceptive behavior changes. CGRP and nNOS levels increased significantly in the TNC after IS treatments, and moreover, pain thresholds and locomotor activity decreased with the development of photophobia. In our model, stable high estradiol levels proved to be pronociceptive. Thus, repeated trigeminal activation causes marked behavioral changes, which is more prominent in rats treated with estradiol, also reflected by the expression of the sensitization markers of the trigeminal system.

8.
Cells ; 11(16)2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-36010683

RESUMO

Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.


Assuntos
Cinurenina , Doenças Mitocondriais , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Cinurenina/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Triptofano/metabolismo
9.
J Neural Transm (Vienna) ; 129(5-6): 627-642, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624406

RESUMO

Following introduction of the monoamine oxidase type B inhibitor selegiline for the treatment of Parkinson's disease (PD), discovery of the action mechanism of Alzheimer's disease-modifying agent memantine, the role of iron in PD, and the loss of electron transport chain complex I in PD, and development of the concept of clinical neuroprotection, Peter Riederer launched one of the most challenging research project neurodevelopmental aspects of neuropsychiatric disorders. The neurodevelopmental theory holds that a disruption of normal brain development in utero or during early life underlies the subsequent emergence of neuropsychiatric symptoms during later life. Indeed, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Classification of Diseases, 11th Revision categorize autism spectrum disorder and attention deficit hyperactivity disorder in neurodevelopmental disorders (NDDs). More and more evidence, especially from preclinical studies, is revealing that neurodevelopmental pathology is not limited to the diagnostic class above, but also contributes to the development of other psychiatric disorders such as schizophrenia, bipolar disorder, and obsessive-compulsive disorder as well as neurodegenerative diseases such as PD and Huntington's disease. Preclinical animal research is taking a lead in understanding the pathomechanisms of NDDs, searching for novel targets, and developing new neuroprotective agents against NDDs. This narrative review discusses emerging evidence of the neurodevelopmental etiology of neuropsychiatric disorders, recent advances in modelling neurodevelopmental pathogenesis, potential strategies of clinical neuroprotection using novel kynurenine metabolites and analogues, and future research direction for NDDs.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Fármacos Neuroprotetores , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Humanos , Cinurenina , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Selegilina
10.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614146

RESUMO

Migraine is a chronic neurological disorder that affects approximately 12% of the population. The cause of migraine headaches is not yet known, however, when the trigeminal system is activated, neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P (SP) are released, which cause neurogenic inflammation and sensitization. Advances in the understanding of migraine pathophysiology have identified new potential pharmacological targets. In recent years, transient receptor potential (TRP) channels have been the focus of attention in the pathophysiology of various pain disorders, including primary headaches. Genetic and pharmacological data suggest the role of TRP channels in pain sensation and the activation and sensitization of dural afferents. In addition, TRP channels are widely expressed in the trigeminal system and brain regions which are associated with the pathophysiology of migraine and furthermore, co-localize several neuropeptides that are implicated in the development of migraine attacks. Moreover, there are several migraine trigger agents known to activate TRP channels. Based on these, TRP channels have an essential role in migraine pain and associated symptoms, such as hyperalgesia and allodynia. In this review, we discuss the role of the certain TRP channels in migraine pathophysiology and their therapeutic applicability.


Assuntos
Transtornos de Enxaqueca , Neuropeptídeos , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/genética , Pesquisa Translacional Biomédica , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/genética , Neuropeptídeos/uso terapêutico , Hiperalgesia , Dor
11.
J Headache Pain ; 22(1): 17, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789568

RESUMO

BACKGROUND: The topical inflammatory soup can model the inflammation of the dura mater causing hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in the sensitization process there. 5-HT1B/1D receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can act on structures involved in trigeminal activation. AIM: We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their modulatory effects are comparable. MATERIAL AND METHODS: After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult male Sprague-Dawley rats (n = 72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for immunohistochemistry. RESULTS AND CONCLUSION: Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo, which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT1B/1D and NMDA receptors in neurogenic inflammation development of the dura and thus in migraine attacks.


Assuntos
Sumatriptana , Núcleo Inferior Caudal do Nervo Trigêmeo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dura-Máter/metabolismo , Ácido Cinurênico , Masculino , Ratos , Ratos Sprague-Dawley , Sumatriptana/farmacologia , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleos do Trigêmeo
12.
Biomedicines ; 10(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35052756

RESUMO

Migraine is a primary headache disorder characterized by a unilateral, throbbing, pulsing headache, which lasts for hours to days, and the pain can interfere with daily activities. It exhibits various symptoms, such as nausea, vomiting, sensitivity to light, sound, and odors, and physical activity consistently contributes to worsening pain. Despite the intensive research, little is still known about the pathomechanism of migraine. It is widely accepted that migraine involves activation and sensitization of the trigeminovascular system. It leads to the release of several pro-inflammatory neuropeptides and neurotransmitters and causes a cascade of inflammatory tissue responses, including vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Convincing evidence obtained in rodent models suggests that neurogenic inflammation is assumed to contribute to the development of a migraine attack. Chemical stimulation of the dura mater triggers activation and sensitization of the trigeminal system and causes numerous molecular and behavioral changes; therefore, this is a relevant animal model of acute migraine. This narrative review discusses the emerging evidence supporting the involvement of neurogenic inflammation and neuropeptides in the pathophysiology of migraine, presenting the most recent advances in preclinical research and the novel therapeutic approaches to the disease.

14.
J Headache Pain ; 21(1): 101, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799798

RESUMO

BACKGROUND: Although migraine is one of the most common primary headaches, its therapy is still limited in many cases. The use of animal models is crucial in the development of novel therapeutic strategies, but unfortunately, none of them show all aspects of the disease, therefore, there is a constant need for further improvement in this field. The application of inflammatory agents on the dura mater is a widely accepted method to mimic neurogenic inflammation in rodents, which plays a key role in the pathomechanism of migraine. Complete Freund's Adjuvant (CFA), and a mixture of inflammatory mediators, called inflammatory soup (IS) are often used for this purpose. METHODS: To examine the activation pattern that is caused by chemical stimulation of dura mater, we applied CFA or IS over the right parietal lobe. After 2 h and 4 h (CFA groups), or 2.5 h and 4 h (IS groups), animals were perfused, and c-Fos immunoreactive cells were counted in the caudal trigeminal nucleus. To explore every pitfall, we examined whether our surgical procedure (anesthetic drug, stereotaxic apparatus, local lidocaine) can alter the results under the same experimental settings. c-Fos labeled cells were counted in the second-order neuron area based on the somatotopic organization of the trigeminal nerve branches. RESULTS: We could not find any difference between the CFA and physiological saline group neither 2 h, nor 4 h after dural stimulation. IS caused significant difference after both time points between IS treated and control group, and between treated (right) and control (left) side. Stereotaxic frame usage had a substantial effect on the obtained results. CONCLUSIONS: Counting c-Fos immunoreactive cells based on somatotopic organization of the trigeminal nerve helped to examine the effect of chemical stimulation of dura in a more specific way. As a result, the use of IS over the parietal lobe caused activation in the area of the ophthalmic nerve. To see this effect, the use of lidocaine anesthesia is indispensable. In conclusion, application of IS on the dura mater induces short-term, more robust c-Fos activation than CFA, therefore it might offer a better approach to model acute migraine headache in rodents.


Assuntos
Dura-Máter/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Animais , Adjuvante de Freund , Cefaleia , Inflamação , Lidocaína/farmacologia , Masculino , Transtornos de Enxaqueca/tratamento farmacológico , Neurônios , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Estimulação Química , Nervo Trigêmeo
15.
J Pain Res ; 11: 2011-2021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30310305

RESUMO

BACKGROUND: The prevalence of craniofacial pain disorders show sexual dimorphism with generally more common appearance in women suggesting the influence of estradiol, but the exact cause remains unknown. The common point in the pathogenesis of these disorders is the activation of trigeminal system. One of the animal experimental models of trigeminal activation is the orofacial formalin test, in which we investigated the effect of chronic 17ß-estradiol pretreatment on the trigeminal pain-related behavior and activation of trigeminal second-order neurons at the level of spinal trigeminal nucleus pars caudalis (TNC). METHODS: Female Sprague Dawley rats were ovariectomized and silicone capsules were implanted subcutaneously containing cholesterol in the OVX group and 17ß-estradiol and cholesterol in 1:1 ratio in the OVX+E2 group. We determined 17ß-estradiol levels in serum after the implantation of capsules. Three weeks after operation, 50 µL of physiological saline or 1.5% of formalin solution was injected subcutaneously into the right whisker pad of rats. The time spent on rubbing directed to the injected area and c-Fos immunoreactivity in TNC was measured as the formalin-induced pain-related behavior, and as the marker of pain-related neuronal activation, respectively. RESULTS: The chronic 17ß-estradiol pretreatment mimics the plasma levels of estrogen occurring in the proestrus phase and significantly increased the formalin-induced pain-related behavior and neuronal activation in TNC. CONCLUSION: Our results demonstrate that the chronic 17ß-estradiol treatment has strong pronociceptive effect on orofacial formalin-induced inflammatory pain suggesting modulatory action of estradiol on head pain through estrogen receptors, which are present in the trigeminal system.

16.
J Chem Neuroanat ; 85: 13-20, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28625856

RESUMO

Migraine is one of the most prevalent neurological diseases, which affects 16% of the total population. The exact pathomechanism of this disorder is still not well understood, but it seems that serotonin and its transporter have a crucial role in the pathogenesis. One of the animal models of migraine is the systemic administration of nitroglycerin (NTG), a nitric oxide (NO) donor. NO can initiate a central sensitization process in the trigeminal system, which is also present in migraineurs. Recent studies showed that the endocannabinoid system has a modulatory role on the trigeminal activation and sensitization. Our aim was to investigate the effect of an endogenous cannabinoid, anandamide (AEA) on the NTG-induced changes on serotonin transporter (5-HTT) expression in the upper cervical spinal cord (C1-C2) of the rat, where most of the trigeminal nociceptive afferents convey. The animals were divided into four groups. Rats in the first group, called placebo, received only the vehicle solution as treatment. In the second group, they were treated with an intraperitoneal (i.p.) injection of NTG (10mg/kg). Rats in the third and fourth groups received i.p. AEA (2×5mg/kg) half hour before and one hour after the placebo or NTG treatment. Four hours after placebo/NTG injection, the animals were perfused and the cervical spinal cords were removed for immunohistochemistry and Western blotting. Our results show that both NTG and AEA alone are able to increase 5-HTT expression in the C1-C2 segments. Combination of NTG and AEA has an opposing effect on this marker, nullifying the effects of non-combined administration, probably by negative feedback mechanisms.


Assuntos
Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroglicerina/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Medula Espinal/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
17.
Front Neurol ; 8: 278, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659861

RESUMO

The primary headache disorders include migraine, which is one of the most frequent neurological disorders, which influences more than 14% of the whole population. Despite the research efforts, its exact pathomechanism is not fully revealed, but evidence points to the role of glutamate and its receptors. Kynurenic acid is an endogenous glutamate receptor antagonist produced by the kynurenine pathway (KP). Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) convert l-tryptophan to N-formyl-l-kynurenine, to be further transformed to l-kynurenine. Kynurenine aminotransferase-II (KAT-II), l-kynurenine hydrolase (KYNU), and l-kynurenine 3-monooxygenase (KMO) are key enzymes in the later steps of the KP. Nitroglycerin (NTG) administration serves as both human and animal model of migraine, causing the activation and sensitization in the trigeminal system. A previous study demonstrated a reduction of KAT-II expression following NTG administration in animals. The goal of current tests was to identify the potential modulatory effect of NTG on other metabolizing enzymes of the KP in the caudal trigeminal nucleus (TNC) of rats. Four hours following the intraperitoneal injection of NTG (10 mg/kg), the rats were perfused transcardially and the TNC was extracted for Western blotting. Western blot studies revealed that the expression of TDO2, IDO1, KYNU, and KMO decreased in the TNC. The results demonstrated that NTG is able to downregulate the KP, with a potential influence on the glutamatergic system as well, contributing to the development of trigeminal activation and sensitization in animals.

18.
Cephalalgia ; 36(9): 849-61, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26512068

RESUMO

BACKGROUND: One of the human and animal models of migraine is the systemic administration of the nitric oxide donor (NO) nitroglycerin (NTG). NO can provoke migraine-like attacks in migraineurs and initiates a self-amplifying process in the trigeminal system, probably leading to central sensitization. Recent studies suggest that the endocannabinoid system is involved in nociceptive signal processing and cannabinoid receptor (CB) agonists are able to attenuate nociception in animal models of pain. AIM: The purpose of the present study was to investigate the modulatory effects of a CB agonist anandamide (AEA) on the NTG-induced expression of transient receptor potential vanilloid type 1 (TRPV1), neuronal nitric oxide synthase (nNOS), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2) and kynurenine aminotransferase-II (KAT-II) in the upper cervical spinal cord (C1-C2) of the rat, where most of the trigeminal nociceptive afferents convey. METHODS: A half hour before and one hour after NTG (10 mg/kg) or placebo injection, adult male Sprague-Dawley rats (n = 44) were treated with AEA (2 × 5 mg/kg). Four hours after placebo/NTG injection, the animals were perfused and the cervical spinal cords were removed for immunohistochemistry and Western blotting. RESULTS AND CONCLUSION: Our results show that NTG is able to increase TRPV1, nNOS, NF-κB and COX-2 and decrease KAT-II expression in the C1-C2 segments. On the other hand, we have found that AEA modulates the NTG-induced changes, thus it influences the activation and central sensitization process in the trigeminal system, probably via CBs.


Assuntos
Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Endocanabinoides/farmacologia , Transtornos de Enxaqueca/fisiopatologia , Alcamidas Poli-Insaturadas/farmacologia , Nervo Trigêmeo/efeitos dos fármacos , Vias Aferentes/efeitos dos fármacos , Animais , Western Blotting , Vértebras Cervicais , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Transtornos de Enxaqueca/induzido quimicamente , Doadores de Óxido Nítrico/toxicidade , Nitroglicerina/toxicidade , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...