Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Leukemia ; 35(3): 679-690, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32606318

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes and is largely driven by the NOTCH/MYC pathway. Yet, additional oncogenic drivers are required for transformation. Here, we identify protein tyrosine phosphatase type 4 A3 (PRL3) as a collaborating oncogenic driver in T-ALL. PRL3 is expressed in a large fraction of primary human T-ALLs and is commonly co-amplified with MYC. PRL3 also synergized with MYC to initiate early-onset ALL in transgenic zebrafish and was required for human T-ALL growth and maintenance. Mass-spectrometry phosphoproteomic analysis and mechanistic studies uncovered that PRL3 suppresses downstream T-cell phosphorylation signaling pathways, including those modulated by VAV1, and subsequently suppresses apoptosis in leukemia cells. Taken together, our studies have identified new roles for PRL3 as a collaborating oncogenic driver in human T-ALL and suggest that therapeutic targeting of the PRL3 phosphatase will likely be a useful treatment strategy for T-ALL.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Tirosina Fosfatases/metabolismo , Linfócitos T/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Prognóstico , Proteínas Tirosina Fosfatases/genética , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
2.
Methods Cell Biol ; 135: 329-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27443934

RESUMO

Gene expression analysis is increasingly important in many fields of biological research. Understanding patterns of expressed genes is assumed to provide insight into complex regulatory networks and can lead to the identification of genes relevant to specific biological processes, including disease. Among different techniques, reverse transcription quantitative polymerase chain reaction (RT-qPCR) is currently regarded as the gold standard for targeted quantification of RNA gene expression, especially because of its high sensitivity, specificity, accuracy, and precision, and also because of its practical simplicity and processing speed. However, different critical factors can influence the outcome of RT-qPCR studies, including isolation of RNA, reverse transcription to cDNA, and data analysis. These factors need to be addressed in order to obtain biologically meaningful results. In this chapter, we describe how RT-qPCR can be used in a reliable way to successfully study differential gene expression in zebrafish. Hereby, we especially focus on how expressed repetitive elements can be employed as reference targets in zebrafish RT-qPCR studies and how they can further improve the quality of the data.


Assuntos
Perfilação da Expressão Gênica/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequências Repetitivas de Ácido Nucleico/genética , Peixe-Zebra/genética , Animais , DNA Complementar/genética , Regulação da Expressão Gênica/genética , RNA/biossíntese , RNA/genética
4.
Leukemia ; 29(12): 2317-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26108691

RESUMO

The TLX1 transcription factor is critically involved in the multi-step pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and often cooperates with NOTCH1 activation during malignant T-cell transformation. However, the exact molecular mechanism by which these T-cell specific oncogenes cooperate during transformation remains to be established. Here, we used chromatin immunoprecipitation followed by sequencing to establish the genome-wide binding pattern of TLX1 in human T-ALL. This integrative genomics approach showed that ectopic TLX1 expression drives repression of T cell-specific enhancers and mediates an unexpected transcriptional antagonism with NOTCH1 at critical target genes, including IL7R and NOTCH3. These phenomena coordinately trigger a TLX1-driven pre-leukemic phenotype in human thymic precursor cells, reminiscent of the thymus regression observed in murine TLX1 tumor models, and create a strong genetic pressure for acquiring activating NOTCH1 mutations as a prerequisite for full leukemic transformation. In conclusion, our results uncover a functional antagonism between cooperative oncogenes during the earliest phases of tumor development and provide novel insights in the multi-step pathogenesis of TLX1-driven human leukemia.


Assuntos
Proteínas de Homeodomínio/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas de Homeodomínio/fisiologia , Humanos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptor Notch1/genética , Receptor Notch1/fisiologia
5.
Leukemia ; 29(4): 798-806, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25231743

RESUMO

The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3'untranslated region-microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL.


Assuntos
Regulação Leucêmica da Expressão Gênica , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-myb/genética , Linfócitos T/metabolismo , Regiões 3' não Traduzidas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Perfilação da Expressão Gênica , Biblioteca Genômica , Humanos , Camundongos , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Transdução de Sinais , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Linfócitos T/patologia , Transcriptoma , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Oncogene ; 34(26): 3357-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25174395

RESUMO

Neuroblastoma, a childhood cancer that originates from neural crest-derived cells, is the most common deadly solid tumor of infancy. Amplification of the MYCN oncogene, which occurs in approximately 20-25% of human neuroblastomas, is the most prominent genetic marker of high-stage disease. The availability of valid preclinical in vivo models is a prerequisite to develop novel targeted therapies. We here report on the generation of transgenic mice with Cre-conditional induction of MYCN in dopamine ß-hydroxylase-expressing cells, termed LSL-MYCN;Dbh-iCre. These mice develop neuroblastic tumors with an incidence of >75%, regardless of strain background. Molecular profiling of tumors revealed upregulation of the MYCN-dependent miR-17-92 cluster as well as expression of neuroblastoma marker genes, including tyrosine hydroxylase and the neural cell adhesion molecule 1. Gene set enrichment analyses demonstrated significant correlation with MYC-associated expression patterns. Array comparative genome hybridization showed that chromosomal aberrations in LSL-MYCN;Dbh-iCre tumors were syntenic to those observed in human neuroblastomas. Treatment of a cell line established from a tumor derived from a LSL-MYCN;Dbh-iCre mouse with JQ1 or MLN8237 reduced cell viability and demonstrated oncogene addiction to MYCN. Here we report establishment of the first Cre-conditional human MYCN-driven mouse model for neuroblastoma that closely recapitulates the human disease with respect to tumor localization, histology, marker expression and genomic make up. This mouse model is a valuable tool for further functional studies and to assess the effect of targeted therapies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Integrases/genética , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , Transgenes , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Análise em Microsséries , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Células Tumorais Cultivadas
8.
Oncogene ; 32(24): 2927-36, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22797059

RESUMO

MicroRNAs (miRNAs) contribute to the pathogenesis of many forms of cancer, including the pediatric cancer neuroblastoma, but the underlying mechanisms leading to altered miRNA expression are often unknown. Here, a novel integrated approach for analyzing DNA methylation coupled with miRNA and mRNA expression data sets identified 67 epigenetically regulated miRNA in neuroblastoma. A large proportion (42%) of these miRNAs was associated with poor patient survival when underexpressed in tumors. Moreover, we demonstrate that this panel of epigenetically silenced miRNAs targets a large set of genes that are overexpressed in tumors from patients with poor survival in a highly redundant manner. The genes targeted by the epigenetically regulated miRNAs are enriched for a number of biological processes, including regulation of cell differentiation. Functional studies involving ectopic overexpression of several of the epigenetically silenced miRNAs had a negative impact on neuroblastoma cell viability, providing further support to the concept that inactivation of these miRNAs is important for neuroblastoma disease pathogenesis. One locus, miR-340, induced either differentiation or apoptosis in a cell context dependent manner, indicating a tumor suppressive function for this miRNA. Intriguingly, it was determined that miR-340 is upregulated by demethylation of an upstream genomic region that occurs during the process of neuroblastoma cell differentiation induced by all-trans retinoic acid (ATRA). Further biological studies of miR-340 revealed that it directly represses the SOX2 transcription factor by targeting of its 3'-untranslated region, explaining the mechanism by which SOX2 is downregulated by ATRA. Although SOX2 contributes to the maintenance of stem cells in an undifferentiated state, we demonstrate that miR-340-mediated downregulation of SOX2 is not required for ATRA induced differentiation to occur. In summary, our results exemplify the dynamic nature of the miRNA epigenome and identify a remarkable network of miRNA/mRNA interactions that significantly contribute to neuroblastoma disease pathogenesis.


Assuntos
Epigênese Genética/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Neuroblastoma/etiologia , Neuroblastoma/genética , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Biologia Computacional , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genômica , Humanos , Neuroblastoma/patologia , Fatores de Transcrição SOXB1/genética , Análise de Sobrevida , Tretinoína/farmacologia
9.
Oncogene ; 32(8): 1059-65, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22484425

RESUMO

Neuroblastoma is an embryonal tumor with a heterogeneous clinical course. The tumor is presumed to be derived from the neural crest, but the cells of origin remain to be determined. To date, few recurrent genetic changes contributing to neuroblastoma formation, such as amplification of the MYCN oncogene and activating mutations of the ALK oncogene, have been identified. The possibility to model neuroblastoma in mice allows investigation of the cell of origin hypothesis in further detail. Here we present the evidence that murine neural crest progenitor cells can give rise to neuroblastoma upon transformation with MYCN or ALK(F1174L). For this purpose we used JoMa1, a multipotent neural crest progenitor cell line, which is kept in a viable and undifferentiated state by a tamoxifen-activated c-Myc transgene (c-MycER(T)). Expression of MYCN or ALK(F1174L), one of the oncogenic ALK variants identified in primary neuroblastomas, enabled these cells to grow independently of c-MycER(T) activity in vitro and caused formation of neuroblastoma-like tumors in vivo in contrast to parental JoMa1 cells and JoMa1 cells-expressing TrkA or GFP. Tumorigenicity was enhanced upon serial transplantation of tumor-derived cells, and tumor cells remained susceptible to the MYC-inhibitor, NBT-272, indicating that cell growth depended on functional MYCN. Our findings support neural crest progenitor cells as the precursor cells of neuroblastoma, and indicate that neuroblastomas arise as their malignant progeny.


Assuntos
Células-Tronco Neoplásicas/patologia , Crista Neural/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Células-Tronco/patologia , Quinase do Linfoma Anaplásico , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc , Células-Tronco Neoplásicas/metabolismo , Crista Neural/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/biossíntese , Proteínas Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/biossíntese , Receptores Proteína Tirosina Quinases/metabolismo , Células-Tronco/metabolismo , Transfecção , Transplante Heterólogo
10.
Br J Cancer ; 107(8): 1409-17, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23047593

RESUMO

BACKGROUND: Using mRNA expression-derived signatures as predictors of individual patient outcome has been a goal ever since the introduction of microarrays. Here, we addressed whether analyses of tumour mRNA at the exon level can improve on the predictive power and classification accuracy of gene-based expression profiles using neuroblastoma as a model. METHODS: In a patient cohort comprising 113 primary neuroblastoma specimens expression profiling using exon-level analyses was performed to define predictive signatures using various machine-learning techniques. Alternative transcript use was calculated from relative exon expression. Validation of alternative transcripts was achieved using qPCR- and cell-based approaches. RESULTS: Both predictors derived from the gene or the exon levels resulted in prediction accuracies >80% for both event-free and overall survival and proved as independent prognostic markers in multivariate analyses. Alternative transcript use was most prominently linked to the amplification status of the MYCN oncogene, expression of the TrkA/NTRK1 neurotrophin receptor and survival. CONCLUSION: As exon level-based prediction yields comparable, but not significantly better, prediction accuracy than gene expression-based predictors, gene-based assays seem to be sufficiently precise for predicting outcome of neuroblastoma patients. However, exon-level analyses provide added knowledge by identifying alternative transcript use, which should deepen the understanding of neuroblastoma biology.


Assuntos
Éxons/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Receptor trkA/genética , Linhagem Celular Tumoral , Pré-Escolar , Perfilação da Expressão Gênica , Humanos , Lactente , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/mortalidade , Prognóstico , RNA Mensageiro , Fatores de Risco , Análise de Sobrevida
11.
Br J Cancer ; 107(8): 1418-22, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22976801

RESUMO

BACKGROUND: In the INRG dataset, the hypothesis that any segmental chromosomal alteration might be of prognostic impact in neuroblastoma without MYCN amplification (MNA) was tested. METHODS: The presence of any segmental chromosomal alteration (chromosome 1p deletion, 11q deletion and/or chromosome 17q gain) defined a segmental genomic profile. Only tumours with a confirmed unaltered status for all three chromosome arms were considered as having no segmental chromosomal alterations. RESULTS: Among the 8800 patients in the INRG database, a genomic type could be attributed for 505 patients without MNA: 397 cases had a segmental genomic type, whereas 108 cases had an absence of any segmental alteration. A segmental genomic type was more frequent in patients >18 months and in stage 4 disease (P<0.0001). In univariate analysis, 11q deletion, 17q gain and a segmental genomic type were associated with a poorer event-free survival (EFS) (P<0.0001, P=0.0002 and P<0.0001, respectively). In multivariate analysis modelling EFS, the parameters age, stage and a segmental genomic type were retained in the model, whereas the individual genetic markers were not (P<0.0001 and RR=2.56; P=0.0002 and RR=1.8; P=0.01 and RR=1.7, respectively). CONCLUSION: A segmental genomic profile, rather than the single genetic markers, adds prognostic information to the clinical markers age and stage in neuroblastoma patients without MNA, underlining the importance of pangenomic studies.


Assuntos
Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 17/genética , Humanos , Lactente , Proteína Proto-Oncogênica N-Myc , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida
12.
Leukemia ; 26(9): 2039-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22699452

RESUMO

Lysine (K)-specific demethylase 1A (LSD1/KDM1A) has been identified as a potential therapeutic target in solid cancers and more recently in acute myeloid leukemia. However, the potential side effects of a LSD1-inhibitory therapy remain elusive. Here, we show, with a newly established conditional in vivo knockdown model, that LSD1 represents a central regulator of hematopoietic stem and progenitor cells. LSD1 knockdown (LSD1-kd) expanded progenitor numbers by enhancing their proliferative behavior. LSD1-kd led to an extensive expansion of granulomonocytic, erythroid and megakaryocytic progenitors. In contrast, terminal granulopoiesis, erythropoiesis and platelet production were severely inhibited. The only exception was monopoiesis, which was promoted by LSD1 deficiency. Importantly, we showed that peripheral blood granulocytopenia, monocytosis, anemia and thrombocytopenia were reversible after LSD1-kd termination. Extramedullary splenic hematopoiesis contributed to the phenotypic reversion, and progenitor populations remained expanded. LSD1-kd was associated with the upregulation of key hematopoietic genes, including Gfi1b, Hoxa9 and Meis1, which are known regulators of the HSC/progenitor compartment. We also demonstrated that LSD1-kd abrogated Gfi1b-negative autoregulation by crossing LSD1-kd with Gfi1b:GFP mice. Taken together, our findings distinguish LSD1 as a critical regulator of hematopoiesis and point to severe, but reversible, side effects of a LSD1-targeted therapy.


Assuntos
Diferenciação Celular , Proliferação de Células , Hematopoese/fisiologia , Oxirredutases N-Desmetilantes/fisiologia , Células-Tronco/citologia , Animais , Western Blotting , Eritropoese/fisiologia , Feminino , Citometria de Fluxo , Granulócitos/citologia , Granulócitos/metabolismo , Histona Desmetilases , Humanos , Integrases/metabolismo , Masculino , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Camundongos Transgênicos , Oxirredutases N-Desmetilantes/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/metabolismo
13.
Cell Death Differ ; 18(6): 974-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21233845

RESUMO

Several microRNA (miRNA) loci are found within genomic regions frequently deleted in primary neuroblastoma, including miR-885-5p at 3p25.3. In this study, we demonstrate that miR-885-5p is downregulated on loss of 3p25.3 region in neuroblastoma. Experimentally enforced miR-885-5p expression in neuroblastoma cell lines inhibits proliferation triggering cell cycle arrest, senescence and/or apoptosis. miR-885-5p leads to the accumulation of p53 protein and activates the p53 pathway, resulting in upregulation of p53 targets. Enforced miR-885-5p expression consistently leads to downregulation of cyclin-dependent kinase (CDK2) and mini-chromosome maintenance protein (MCM5). Both genes are targeted by miR-885-5p via predicted binding sites within the 3'-untranslated regions (UTRs) of CDK2 and MCM5. Transcript profiling after miR-885-5p introduction in neuroblastoma cells reveals alterations in expression of multiple genes, including several p53 target genes and a number of factors involved in p53 pathway activity. Taken together, these data provide evidence that miR-885-5p has a tumor suppressive role in neuroblastoma interfering with cell cycle progression and cell survival.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Quinase 2 Dependente de Ciclina/metabolismo , MicroRNAs/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Quinase 2 Dependente de Ciclina/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Loci Gênicos , Humanos , MicroRNAs/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Deleção de Sequência , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
14.
Oncogene ; 30(18): 2173-80, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21217773

RESUMO

EWS-FLI1 is a chromosome translocation-derived chimeric transcription factor that has a central and rate-limiting role in the pathogenesis of Ewing's sarcoma. Although the EWS-FLI1 transcriptomic signature has been extensively characterized on the mRNA level, information on its impact on non-coding RNA expression is lacking. We have performed a genome-wide analysis of microRNAs affected by RNAi-mediated silencing of EWS-FLI1 in Ewing's sarcoma cell lines, and differentially expressed between primary Ewing's sarcoma and mesenchymal progenitor cells. Here, we report on the identification of hsa-mir-145 as the top EWS-FLI1-repressed microRNA. Upon knockdown of EWS-FLI1, hsa-mir-145 expression dramatically increases in all Ewing's sarcoma cell lines tested. Vice versa, ectopic expression of the microRNA in Ewing's sarcoma cell lines strongly reduced EWS-FLI1 protein, whereas transfection of an anti-mir to hsa-mir-145 increased the EWS-FLI1 levels. Reporter gene assays revealed that this modulation of EWS-FLI1 protein was mediated by the microRNA targeting the FLI1 3'-untranslated region. Mutual regulations of EWS-FLI1 and hsa-mir-145 were mirrored by an inverse correlation between their expression levels in four of the Ewing's sarcoma cell lines tested. Consistent with the role of EWS-FLI1 in Ewing's sarcoma growth regulation, forced hsa-mir-145 expression halted Ewing's sarcoma cell line growth. These results identify feedback regulation between EWS-FLI1 and hsa-mir-145 as an important component of the EWS-FLI1-mediated Ewing's sarcomagenesis that may open a new avenue to future microRNA-mediated therapy of this devastating malignant disease.


Assuntos
MicroRNAs/genética , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/genética , Sequência de Bases , Primers do DNA , Humanos
15.
Leukemia ; 25(1): 130-4, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21030981

RESUMO

Loss of function mutations and deletions encompassing the plant homeodomain finger 6 (PHF6) gene are present in about 20% of T-cell acute lymphoblastic leukemias (ALLs). Here, we report the identification of recurrent mutations in PHF6 in 10/353 adult acute myeloid leukemias (AMLs). Genetic lesions in PHF6 found in AMLs are frameshift and nonsense mutations distributed through the gene or point mutations involving the second plant homeodomain (PHD)-like domain of the protein. As in the case of T-ALL, where PHF6 alterations are found almost exclusively in males, mutations in PHF6 were seven times more prevalent in males than in females with AML. Overall, these results identify PHF6 as a tumor suppressor gene mutated in AML and extend the role of this X-linked tumor suppressor gene in the pathogenesis of hematologic tumors.


Assuntos
Proteínas de Transporte/genética , Leucemia Mieloide Aguda/genética , Mutação , Adulto , Idoso , Animais , Feminino , Genes Supressores de Tumor , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/etiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Células Mieloides/metabolismo , Proteínas Repressoras , Caracteres Sexuais
16.
Leukemia ; 24(12): 2023-31, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861920

RESUMO

Risk-adjusted treatment stratification in T-cell acute lymphoblastic leukemias (T-ALLs) is currently based only on early response to chemotherapy. We investigated the prognostic implication of hyperactivation of NOTCH pathway resulting from mutations of NOTCH1 or FBXW7 in children with T-ALL enrolled in EORTC-CLG trials. Overall, 80 out of 134 (60%) patients were NOTCH+ (NOTCH1 and/or FBXW7 mutated). Although clinical presentations were not significantly associated with NOTCH status, NOTCH+ patients showed a better early response to chemotherapy as compared with NOTCH- patients, according to the rate of poor pre-phase 'responders' (25% versus 44%; P=0.02) and the incidence of high minimal residual disease (MRD) levels (11% (7/62) versus 32% (10/31); P=0.01) at completion of induction. However, the outcome of NOTCH+ patients was similar to that of NOTCH- patients, with a 5-year event-free survival (EFS) of 73% and 70% (P=0.82), and 5-year overall survival of 82% and 79% (P=0.62), respectively. In patients with high MRD levels, the 5-year EFS rate was 0% (NOTCH+) versus 42% (NOTCH-), whereas in those with low MRD levels, the outcome was similar: 76% (NOTCH+) versus 78% (NOTCH-). The incidence of isolated central nervous system (CNS) relapses was relatively high in NOTCH1+ patients (8.3%), which could be related to a higher propensity of NOTCH+ leukemic blasts to target the CNS.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Ubiquitina-Proteína Ligases/genética , Criança , Intervalo Livre de Doença , Proteína 7 com Repetições F-Box-WD , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Estudos Prospectivos
17.
Oncogene ; 29(24): 3583-92, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20383195

RESUMO

Different classes of non-coding RNAs, including microRNAs, have recently been implicated in the process of tumourigenesis. In this study, we examined the expression and putative functions of a novel class of non-coding RNAs known as transcribed ultraconserved regions (T-UCRs) in neuroblastoma. Genome-wide expression profiling revealed correlations between specific T-UCR expression levels and important clinicogenetic parameters such as MYCN amplification status. A functional genomics approach based on the integration of multi-level transcriptome data was adapted to gain insights into T-UCR functions. Assignments of T-UCRs to cellular processes such as TP53 response, differentiation and proliferation were verified using various cellular model systems. For the first time, our results define a T-UCR expression landscape in neuroblastoma and suggest widespread T-UCR involvement in diverse cellular processes that are deregulated in the process of tumourigenesis.


Assuntos
Sequência Conservada/genética , Genômica , Neuroblastoma/genética , RNA Neoplásico/genética , RNA não Traduzido/genética , Transcrição Gênica , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Neuroblastoma/diagnóstico , Neuroblastoma/patologia , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/biossíntese , RNA não Traduzido/biossíntese , Reprodutibilidade dos Testes
18.
Oncogene ; 29(9): 1394-404, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19946337

RESUMO

Increased activity of MYC protein-family members is a common feature in many cancers. Using neuroblastoma as a tumor model, we established a microRNA (miRNA) signature for activated MYCN/c-MYC signaling in two independent primary neuroblastoma tumor cohorts and provide evidence that c-MYC and MYCN have overlapping functions. On the basis of an integrated approach including miRNA and messenger RNA (mRNA) gene expression data we show that miRNA activation contributes to widespread mRNA repression, both in c-MYC- and MYCN-activated tumors. c-MYC/MYCN-induced miRNA activation was shown to be dependent on c-MYC/MYCN promoter binding as evidenced by chromatin immunoprecipitation. Finally, we show that pathways, repressed through c-MYC/MYCN miRNA activation, are highly correlated to tumor aggressiveness and are conserved across different tumor entities suggesting that c-MYC/MYCN activate a core set of miRNAs for cooperative repression of common transcriptional programs related to disease aggressiveness. Our results uncover a widespread correlation between miRNA activation and c-MYC/MYCN-mediated coding gene expression modulation and further substantiate the overlapping functions of c-MYC and MYCN in the process of tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/efeitos dos fármacos , Genes myc/fisiologia , MicroRNAs/farmacologia , Neuroblastoma/genética , Proteínas Nucleares/farmacologia , Proteínas Oncogênicas/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Linhagem Celular Tumoral , Redes Reguladoras de Genes/fisiologia , Inativação Gênica/fisiologia , Genes myc/genética , Humanos , MicroRNAs/biossíntese , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/terapia , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição/fisiologia , Resultado do Tratamento
19.
Cell Death Differ ; 16(12): 1563-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19779493

RESUMO

A primary failsafe program against unrestrained proliferation and oncogenesis is provided by the p53 tumor suppressor protein, inactivation of which is considered as a hallmark of cancer. Intriguingly, mutations of the TP53 gene are rarely encountered in neuroblastoma tumors, suggesting that alternative p53-inactivating lesions account for escape from p53 control in this childhood malignancy. Several recent studies have shed light on the mechanisms by which neuroblastoma cells circumvent the p53-driven antitumor barrier. We review here these mechanisms for evasion of p53-mediated growth control and conclude that deregulation of the p14(ARF)-MDM2-p53 axis seems to be the principal mode of p53 inactivation in neuroblastoma, opening new perspectives for targeted therapeutic intervention.


Assuntos
Neuroblastoma/metabolismo , Neuroblastoma/terapia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais
20.
Br J Cancer ; 100(9): 1471-82, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19401703

RESUMO

Neuroblastoma serves as a paradigm for utilising tumour genomic data for determining patient prognosis and treatment allocation. However, before the establishment of the International Neuroblastoma Risk Group (INRG) Task Force in 2004, international consensus on markers, methodology, and data interpretation did not exist, compromising the reliability of decisive genetic markers and inhibiting translational research efforts. The objectives of the INRG Biology Committee were to identify highly prognostic genetic aberrations to be included in the new INRG risk classification schema and to develop precise definitions, decisive biomarkers, and technique standardisation. The review of the INRG database (n=8800 patients) by the INRG Task Force finally enabled the identification of the most significant neuroblastoma biomarkers. In addition, the Biology Committee compared the standard operating procedures of different cooperative groups to arrive at international consensus for methodology, nomenclature, and future directions. Consensus was reached to include MYCN status, 11q23 allelic status, and ploidy in the INRG classification system on the basis of an evidence-based review of the INRG database. Standardised operating procedures for analysing these genetic factors were adopted, and criteria for proper nomenclature were developed. Neuroblastoma treatment planning is highly dependant on tumour cell genomic features, and it is likely that a comprehensive panel of DNA-based biomarkers will be used in future risk assignment algorithms applying genome-wide techniques. Consensus on methodology and interpretation is essential for uniform INRG classification and will greatly facilitate international and cooperative clinical and translational research studies.


Assuntos
Neuroblastoma/diagnóstico , Neuroblastoma/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 17 , Consenso , Amplificação de Genes , Marcadores Genéticos , Humanos , Cooperação Internacional , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/epidemiologia , Neuroblastoma/psicologia , Neuroblastoma/terapia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Planejamento de Assistência ao Paciente , Ploidias , Prognóstico , Biossíntese de Proteínas , Medição de Risco , Fatores de Risco , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...