Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(1)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593971

RESUMO

Genomic surveillance of viral isolates during the 2013-2016 Ebola virus epidemic in Western Africa, the largest and most devastating filovirus outbreak on record, revealed several novel mutations. The responsible strain, named Makona, carries an A-to-V substitution at position 82 (A82V) in the glycoprotein (GP), which is associated with enhanced infectivity in vitro Here, we investigated the mechanistic basis for this enhancement as well as the interplay between A82V and a T-to-I substitution at residue 544 of GP, which also modulates infectivity in cell culture. We found that both 82V and 544I destabilize GP, with the residue at position 544 impacting overall stability, while 82V specifically destabilizes proteolytically cleaved GP. Both residues also promote faster kinetics of lipid mixing of the viral and host membranes in live cells, individually and in tandem, which correlates with faster times to fusion following colocalization with the viral receptor Niemann-Pick C1 (NPC1). Furthermore, GPs bearing 82V are more sensitive to proteolysis by cathepsin L (CatL), a key host factor for viral entry. Intriguingly, CatL processed 82V variant GPs to a novel product with a molecular weight of approximately 12,000 (12K), which we hypothesize corresponds to a form of GP that is pre-triggered for fusion. We thus propose a model in which 82V promotes more efficient GP processing by CatL, leading to faster viral fusion kinetics and higher levels of infectivity.IMPORTANCE The 2013-2016 outbreak of Ebola virus disease in West Africa demonstrated the potential for previously localized outbreaks to turn into regional, or even global, health emergencies. With over 28,000 cases and 11,000 confirmed deaths, this outbreak was over 50 times as large as any previously recorded. This outbreak also afforded the largest-ever collection of Ebola virus genomic sequence data, allowing new insights into viral transmission and evolution. Viral mutants arising during the outbreak have attracted attention for their potentially altered patterns of infectivity in cell culture, with potential, if unclear, implications for increased viral spread and/or virulence. Here, we report the properties of one such mutation in the viral glycoprotein, A82V, and its interplay with a previously described polymorphism at position 544. We show that mutations at both residues promote infection and fusion activation in cells but that A82V additionally leads to increased infectivity under cathepsin-limited conditions and the generation of a novel glycoprotein cleavage product.


Assuntos
Ebolavirus/genética , Epidemias , Fusão de Membrana/genética , Mutação , Proteólise , Proteínas do Envelope Viral/genética , Internalização do Vírus , África Ocidental , Substituição de Aminoácidos/genética , Animais , Catepsina L/metabolismo , Linhagem Celular , Chlorocebus aethiops , Doença pelo Vírus Ebola/virologia , Humanos , Células Vero
2.
Cell Chem Biol ; 27(5): 571-585.e6, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32243810

RESUMO

Interferon-induced transmembrane protein 3 (IFITM3) is a key interferon effector that broadly prevents infection by diverse viruses. However, the cellular factors that control IFITM3 homeostasis and antiviral activity have not been fully elucidated. Using site-specific photo-crosslinking and quantitative proteomic analysis, here we present the identification and functional characterization of VCP/p97 AAA-ATPase as a primary interaction partner of IFITM3. We show that IFITM3 ubiquitination at lysine 24 is crucial for VCP binding, trafficking, turnover, and engagement with incoming virus particles. Consistently, pharmacological inhibition of VCP/p97 ATPase activity leads to defective IFITM3 lysosomal sorting, turnover, and co-trafficking with virus particles. Our results showcase the utility of site-specific protein photo-crosslinking in mammalian cells and reveal VCP/p97 as a key cellular factor involved in IFITM3 trafficking and homeostasis.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína com Valosina/metabolismo , Células HEK293 , Humanos , Mapas de Interação de Proteínas , Transporte Proteico , Proteômica , Ubiquitinação
3.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289183

RESUMO

Ebola virus (EBOV) causes highly lethal disease outbreaks against which no FDA-approved countermeasures are available. Although many host factors exploited by EBOV for cell entry have been identified, including host cell surface phosphatidylserine receptors, endosomal cysteine proteases, and the lysosomal cholesterol trafficking protein NPC1, key questions remain. Specifically, late entry steps culminating in viral membrane fusion remain enigmatic. Here, we investigated a set of glycoprotein (GP) mutants previously hypothesized to be entry defective and identified one mutation, R64A, that abolished infection with no apparent impact on GP expression, folding, or viral incorporation. R64A profoundly thermostabilized EBOV GP and rendered it highly resistant to proteolysis in vitro Forward-genetics and cell entry studies strongly suggested that R64A's effects on GP thermostability and proteolysis arrest viral entry at least at two distinct steps: the first upstream of NPC1 binding and the second at a late entry step downstream of fusion activation. Concordantly, toremifene, a small-molecule entry inhibitor previously shown to bind and destabilize GP, may selectively enhance the infectivity of viral particles bearing GP(R64A) at subinhibitory concentrations. R64A provides a valuable tool to further define the interplay between GP stability, proteolysis, and viral membrane fusion; to explore the rational design of stability-modulating antivirals; and to spur the development of next-generation Ebola virus vaccines with improved stability.IMPORTANCE Ebola virus is a medically relevant virus responsible for outbreaks of severe disease in western and central Africa, with mortality rates reaching as high as 90%. Despite considerable effort, there are currently no FDA-approved therapeutics or targeted interventions available, highlighting the need of development in this area. Host-cell invasion represents an attractive target for antivirals, and several drug candidates have been identified; however, our limited understanding of the complex viral entry process challenges the development of such entry-targeting drugs. Here, we report on a glycoprotein mutation that abrogates viral entry and provides insights into the final steps of this process. In addition, the hyperstabilized phenotype of this mutant makes it useful as a tool in the discovery and design of stability-modulating antivirals and next-generation vaccines against Ebola virus.


Assuntos
Ebolavirus/fisiologia , Proteínas do Envelope Viral/genética , Internalização do Vírus , Animais , Chlorocebus aethiops , Ebolavirus/genética , Mutação , Proteína C1 de Niemann-Pick/genética , Células Vero
4.
Nat Chem Biol ; 15(3): 259-268, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30643282

RESUMO

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) have emerged as important innate immune effectors that prevent diverse virus infections in vertebrates. However, the cellular mechanisms and live-cell imaging of these small membrane proteins have been challenging to evaluate during viral entry of mammalian cells. Using CRISPR-Cas9-mediated IFITM-mutant cell lines, we demonstrate that human IFITM1, IFITM2 and IFITM3 act cooperatively and function in a dose-dependent fashion in interferon-stimulated cells. Through site-specific fluorophore tagging and live-cell imaging studies, we show that IFITM3 is on endocytic vesicles that fuse with incoming virus particles and enhances the trafficking of this pathogenic cargo to lysosomes. IFITM3 trafficking is specific to restricted viruses, requires S-palmitoylation and is abrogated with loss-of-function mutants. The site-specific protein labeling and live-cell imaging approaches described here should facilitate the functional analysis of host factors involved in pathogen restriction as well as their mechanisms of regulation.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Vesículas Transportadoras/fisiologia , Células A549 , Animais , Antígenos de Diferenciação/metabolismo , Antivirais , Endossomos/fisiologia , Células HeLa , Humanos , Lisossomos/fisiologia , Imagem Óptica/métodos , Transporte Proteico , Vírion/patogenicidade , Internalização do Vírus
5.
Int J Mol Sci ; 19(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439406

RESUMO

In addition to its roles in transcription and replication, topoisomerase 2 (topo 2) is crucial in shaping mitotic chromosomes and in ensuring the orderly separation of sister chromatids. As well as its recruitment throughout the length of the mitotic chromosome, topo 2 accumulates at the primary constriction. Here, following cohesin release, the enzymatic activity of topo 2 acts to remove residual sister catenations. Intriguingly, topo 2 does not bind and cleave all sites in the genome equally; one preferred site of cleavage is within the core centromere. Discrete topo 2-centromeric cleavage sites have been identified in α-satellite DNA arrays of active human centromeres and in the centromere regions of some protozoans. In this study, we show that topo 2 cleavage sites are also a feature of the centromere in Schizosaccharomyces pombe, the metazoan Drosophila melanogaster and in another vertebrate species, Gallus gallus (chicken). In vertebrates, we show that this site-specific cleavage is diminished by depletion of CENP-I, an essential constitutive centromere protein. The presence, within the core centromere of a wide range of eukaryotes, of precise sites hypersensitive to topo 2 cleavage suggests that these mark a fundamental and conserved aspect of this functional domain, such as a non-canonical secondary structure.


Assuntos
Centrômero/genética , DNA Topoisomerases Tipo II/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Galinhas , Proteínas Cromossômicas não Histona/metabolismo , DNA Satélite/genética , Drosophila melanogaster , Humanos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Coesinas
6.
Cell ; 169(5): 891-904.e15, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525756

RESUMO

While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here, we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N terminus of the ebolavirus glycoproteins (GPs) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Regiões Determinantes de Complementaridade , Reações Cruzadas , Ebolavirus/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Feminino , Furões , Cobaias , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares
7.
mBio ; 7(1): e01857-15, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861015

RESUMO

UNLABELLED: Ebola virus (EBOV) makes extensive and intricate use of host factors in the cellular endosomal/lysosomal pathway to release its genome into the cytoplasm and initiate infection. Following viral internalization into endosomes, host cysteine proteases cleave the EBOV fusion glycoprotein (GP) to unmask the binding site for its intracellular receptor, the cholesterol transporter Niemann-Pick C1 (NPC1). GP-NPC1 interaction is required for viral entry. Despite these and other recent discoveries, late events in EBOV entry following GP-NPC1 binding and culminating in GP-catalyzed fusion between viral and cellular lipid bilayers remain enigmatic. A mechanistic understanding of EBOV membrane fusion has been hampered by the failure of previous efforts to reconstitute fusion in vitro or at the cell surface. This report describes an assay to monitor initial steps directly in EBOV membrane fusion-triggering of GP and virus-cell lipid mixing-by single virions in live cells. Fusogenic triggering of GP occurs predominantly in Rab7-positive (Rab7(+)) endosomes, absolutely requires interaction between proteolytically primed GP and NPC1, and is blocked by key GP-specific neutralizing antibodies with therapeutic potential. Unexpectedly, cysteine protease inhibitors do not inhibit lipid mixing by virions bearing precleaved GP, even though they completely block cytoplasmic entry by these viruses, as shown previously. These results point to distinct cellular requirements for different steps in EBOV membrane fusion and suggest a model in which host cysteine proteases are dispensable for GP fusion triggering after NPC1 binding but are required for the formation of fusion pores that permit genome delivery. IMPORTANCE: Ebola virus (EBOV) causes outbreaks of highly lethal disease for which no approved vaccines or treatments exist. Recent work has elucidated key molecular features of the complex EBOV entry process, including stepwise interactions with multiple host factors. However, there is a critical gap in our understanding of events that surround the final membrane fusion step which persists due to the paucity of direct and extensive investigation of EBOV fusion. Here, we report a real-time assay for EBOV glycoprotein fusion triggering and use it to define its cellular location and requirements. We also uncover an unexpected requirement for host proteases at a step after fusion triggering that may reflect their role in formation of fusion pores for genome delivery.


Assuntos
Proteínas de Transporte/metabolismo , Ebolavirus/fisiologia , Endossomos/virologia , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína C1 de Niemann-Pick , Ligação Proteica , Virologia/métodos
8.
J Virol ; 88(15): 8556-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850726

RESUMO

UNLABELLED: The family Arenaviridae includes a number of viruses of public health importance, such as the category A hemorrhagic fever viruses Lassa virus, Junin virus, Machupo virus, Guanarito virus, and Sabia virus. Current chemotherapy for arenavirus infection is limited to the nucleoside analogue ribavirin, which is characterized by considerable toxicity and treatment failure. Using Pichinde virus as a model arenavirus, we attempted to design glycoprotein-derived fusion inhibitors similar to the FDA-approved anti-HIV peptide enfuvirtide. We have identified a GP2-derived peptide, AVP-p, with antiviral activity and no acute cytotoxicity. The 50% inhibitory dose (IC50) for the peptide is 7 µM, with complete inhibition of viral plaque formation at approximately 20 µM, and its antiviral activity is largely sequence dependent. AVP-p demonstrates activity against viruses with the Old and New World arenavirus viral glycoprotein complex but not against enveloped viruses of other families. Unexpectedly, fusion assays reveal that the peptide induces virus-liposome fusion at neutral pH and that the process is strictly glycoprotein mediated. As observed in cryo-electron micrographs, AVP-p treatment causes morphological changes consistent with fusion protein activation in virions, including the disappearance of prefusion glycoprotein spikes and increased particle diameters, and fluorescence microscopy shows reduced binding by peptide-treated virus. Steady-state fluorescence anisotropy measurements suggest that glycoproteins are destabilized by peptide-induced alterations in viral membrane order. We conclude that untimely deployment of fusion machinery by the peptide could render virions less able to engage in on-pathway receptor binding or endosomal fusion. AVP-p may represent a potent, highly specific, novel therapeutic strategy for arenavirus infection. IMPORTANCE: Because the only drug available to combat infection by Lassa virus, a highly pathogenic arenavirus, is toxic and prone to treatment failure, we identified a peptide, AVP-p, derived from the fusion glycoprotein of a nonpathogenic model arenavirus, which demonstrates antiviral activity and no acute cytotoxicity. AVP-p is unique among self-derived inhibitory peptides in that it shows broad, specific activity against pseudoviruses bearing Old and New World arenavirus glycoproteins but not against viruses from other families. Further, the peptide's mechanism of action is highly novel. Biochemical assays and cryo-electron microscopy indicate that AVP-p induces premature activation of viral fusion proteins through membrane perturbance. Peptide treatment, however, does not increase the infectivity of cell-bound virus. We hypothesize that prematurely activated virions are less fit for receptor binding and membrane fusion and that AVP-p may represent a viable therapeutic strategy for arenavirus infection.


Assuntos
Antivirais/metabolismo , Glicoproteínas/metabolismo , Vírus Pichinde/efeitos dos fármacos , Vírus Pichinde/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Linhagem Celular , Microscopia Crioeletrônica , Glicoproteínas/isolamento & purificação , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Vírus Pichinde/ultraestrutura , Ensaio de Placa Viral , Vírion/efeitos dos fármacos , Vírion/ultraestrutura
9.
PLoS Negl Trop Dis ; 8(3): e2748, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651047

RESUMO

BACKGROUND: Lassa fever (LF), an often-fatal hemorrhagic disease caused by Lassa virus (LASV), is a major public health threat in West Africa. When the violent civil conflict in Sierra Leone (1991 to 2002) ended, an international consortium assisted in restoration of the LF program at Kenema Government Hospital (KGH) in an area with the world's highest incidence of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Clinical and laboratory records of patients presenting to the KGH Lassa Ward in the post-conflict period were organized electronically. Recombinant antigen-based LF immunoassays were used to assess LASV antigenemia and LASV-specific antibodies in patients who met criteria for suspected LF. KGH has been reestablished as a center for LF treatment and research, with over 500 suspected cases now presenting yearly. Higher case fatality rates (CFRs) in LF patients were observed compared to studies conducted prior to the civil conflict. Different criteria for defining LF stages and differences in sensitivity of assays likely account for these differences. The highest incidence of LF in Sierra Leone was observed during the dry season. LF cases were observed in ten of Sierra Leone's thirteen districts, with numerous cases from outside the traditional endemic zone. Deaths in patients presenting with LASV antigenemia were skewed towards individuals less than 29 years of age. Women self-reporting as pregnant were significantly overrepresented among LASV antigenemic patients. The CFR of ribavirin-treated patients presenting early in acute infection was lower than in untreated subjects. CONCLUSIONS/SIGNIFICANCE: Lassa fever remains a major public health threat in Sierra Leone. Outreach activities should expand because LF may be more widespread in Sierra Leone than previously recognized. Enhanced case finding to ensure rapid diagnosis and treatment is imperative to reduce mortality. Even with ribavirin treatment, there was a high rate of fatalities underscoring the need to develop more effective and/or supplemental treatments for LF.


Assuntos
Febre Lassa/epidemiologia , Vírus Lassa/isolamento & purificação , Adolescente , Adulto , Fatores Etários , Anticorpos Antivirais/sangue , Antígenos Virais/sangue , Criança , Pré-Escolar , Feminino , Humanos , Imunoensaio , Incidência , Lactente , Febre Lassa/diagnóstico , Febre Lassa/tratamento farmacológico , Febre Lassa/mortalidade , Masculino , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Ribavirina/uso terapêutico , Estações do Ano , Serra Leoa/epidemiologia , Análise de Sobrevida , Adulto Jovem
10.
Am J Phys Anthropol ; 148(2): 191-204, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22610895

RESUMO

Physiological stress, such as malnutrition or illness, can disrupt normal enamel growth, resulting in linear enamel hypoplasias (LEHs). Although ecological factors may contribute to LEH expression, other factors, such as surface abrasion and enamel growth variables, are also likely to be involved. Attention to these other factors is necessary before we can begin to understand what LEH might signify in terms of ecological sources of physiological stress in non-human primates. This study focuses on assessing the contribution of these other factors to variation in LEH expression within and across great ape taxa. Here, we present LEH data from unabraded crown regions in samples of seven great ape species. We analyze these data with respect to lateral enamel formation time and the angles that striae of Retzius make with the enamel surface, as these variables are expected to affect variation in LEH expression. We find that although the duration of enamel formation is associated with sex differences in LEH expression, it is not clearly related to taxonomic variation in LEH expression, and does not explain the low frequency of LEH in mountain gorillas found in this and a previous study. Our data on striae of Retzius angles suggest that these influence LEH expression along the tooth crown and may contribute to the consistently high frequencies of LEH seen in Pongo in this and previous studies. We suggest that future work aimed at understanding species variation in these angles is crucial to evaluating taxonomic patterns of LEH expression in great apes.


Assuntos
Hipoplasia do Esmalte Dentário/patologia , Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/patologia , Hominidae/anatomia & histologia , Estresse Fisiológico/fisiologia , Animais , Antropologia Física , Feminino , Hominidae/fisiologia , Modelos Logísticos , Masculino , Especificidade da Espécie , Coroa do Dente
11.
Am J Phys Anthropol ; 146(1): 1-13, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21541919

RESUMO

The goal of this longitudinal study was to assess the impact of economic change and increased market integration on subsistence strategies, living conditions, growth, and nutritional status of Ribeirinhos living in the rural Amazon, Brazil. Data on weight, height, skinfolds, and circumferences, as well as data on economic strategies and living conditions were collected from 469 individuals in 2002 and 429 in 2009. Of these, 204 individuals were measured on both occasions. Independent and paired t-tests were used to identify changes in nutritional status over time in the larger sample and smaller, longitudinal subsample, respectively. Multiple linear regressions were used to examine the relationship between changes in economic/living conditions and nutritional status in the longitudinal subsample. Results indicate modest improvements in linear growth (HAZ) and among male children the observed increase was related to enrollment in the Brazilian conditional cash transfer program, Bolsa Família (P = 0.03). In terms of short-term measures of nutritional status, we found a significant increase in ZTSF and a reduction in ZUMA in most age/sex groups. Among subadults, there was a negative relationship between ZUMA and access to electricity (P = 0.01) and positive relationship between ZUMA and the sale of the açaí fruit (P = 0.04). Significant changes in weight and BMI (P < 0.01) were found among adult females and both were negatively related to household cash income (P = 0.02 and P = 0.03, respectively). Despite significant changes in economic strategies and lifestyle, changes in nutritional status were modest which may be explained by increased food insecurity documented during this early stage of transition.


Assuntos
Antropometria , Estado Nutricional , Fatores Socioeconômicos , Adolescente , Adulto , Idoso , Antropologia Física , Índice de Massa Corporal , Peso Corporal , Brasil , Distribuição de Qui-Quadrado , Criança , Pré-Escolar , Família , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Análise de Regressão , População Rural/estatística & dados numéricos
12.
Am J Hum Biol ; 23(4): 458-69, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21538648

RESUMO

OBJECTIVES: The goal of this study was to understand the relationship between economic change (wage labor, retirement, and the Bolsa Família program) and dietary patterns in the rural Amazon and to determine the extent to which these changes followed the pattern of the nutrition transition. METHODS: The study was longitudinal. The weighed-inventory method and economic interviews were used to collect data on dietary intake and household economics in a sample of 30 and 52 women in 2002 and 2009, respectively. Twenty of the women participated in both years and make-up the longitudinal sub-sample. Comparative statistics were used to identify changes in dietary patterns over time and multiple linear regressions were used to explore the relationship between economics, subsistence strategies, and diet. RESULTS: There was a significant decline in kcal (P < 0.01) and carbohydrate (P < 0.01) but no change in protein intake over time in both the larger and smaller, longitudinal subsample. The percent of energy, carbohydrate, protein, and fat purchased increased in the larger and longitudinal samples (P ≤ 0.02) and there was an increase in refined carbohydrate and processed, fatty-meat consumption over time. The abandonment of manioc gardens was associated with increased dependence on purchased food (P = 0.03) while receipt of the Bolsa Família was associated with increased protein intake and adequacy (P = 0.02). CONCLUSIONS: The dietary changes observed are only in partial agreement with predictions of the nutrition transition literature. The relationship between the economic and diet changes was shaped by the local context which should be considered when implementing CCT programs, like the Bolsa Família.


Assuntos
Dieta/economia , Estado Nutricional , População Rural/estatística & dados numéricos , Saúde da Mulher/economia , Adolescente , Adulto , Idoso , Antropometria , Metabolismo Basal , Brasil , Dieta/estatística & dados numéricos , Metabolismo Energético , Feminino , Inquéritos Epidemiológicos , Humanos , Modelos Lineares , Estudos Longitudinais , Pessoa de Meia-Idade , América do Sul , Estatística como Assunto , Fatores de Tempo , Adulto Jovem
13.
Nucleic Acids Res ; 37(14): e98, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19494182

RESUMO

DT40 is a B-cell lymphoma-derived avian cell line widely used to study cell autonomous gene function because of the high rates with which DNA constructs are homologously recombined into its genome. Here, we demonstrate that the power of the DT40 system can be extended yet further through the use of RNA interference as an alternative to gene targeting. We have generated and characterized stable DT40 transfectants in which both topo 2 genes have been in situ tagged using gene targeting, and from which the mRNA of both topoisomerase 2 isoforms can be conditionally depleted through the tetracycline-induced expression of short hairpin RNAs. The cell cycle phenotype of topo 2-depleted DT40 cells has been compared with that previously reported for other vertebrate cells depleted either of topo 2alpha through gene targeting, or depleted of both isoforms simultaneously by transient RNAi. In addition, the DT40 knockdown system has been used to explore whether excess catenation arising through topo 2 depletion is sufficient to trigger the G2 catenation (or decatenation) checkpoint, proposed to exist in differentiated vertebrate cells.


Assuntos
DNA Topoisomerases Tipo II/genética , Técnicas de Silenciamento de Genes , Interferência de RNA , Animais , Ciclo Celular , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Galinhas/genética , Genes Letais , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Índice Mitótico , Fenótipo , Ploidias , Inibidores da Topoisomerase II , Transgenes
14.
Am J Phys Anthropol ; 140(2): 216-33, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19350641

RESUMO

Previous research has demonstrated that great ape and macaque males achieve large canine crown sizes primarily through extended canine growth periods. Recent work has suggested, however, that platyrrhine males may achieve larger canine sizes by accelerating rather than prolonging growth. This study tested the hypothesis that the ontogenetic pathway leading to canine sexual dimorphism in catarrhines differs from that of platyrrhines. To test this hypothesis, males and females of several catarrhine genera (Hylobates, Papio, Macaca, Cercopithecus, and Cercocebus) and three platyrrhine genera (Cebus, Ateles, and Callicebus) were compared in the number and spacing of perikymata (enamel growth increments) on their canine crowns. In addition, perikymata periodicities (the number of days of growth perikymata represent) were determined for five genera (Hylobates, Papio, Macaca, Cebus, and Ateles) using previously published as well as original data gathered for this study. The central findings are as follows: 1) males have more perikymata than females for seven of eight genera (in five of the seven, the differences are statistically significant); 2) in general, the greater the degree of sexual dimorphism, the greater the sex difference in male and female perikymata numbers; 3) there is no evidence of a systematic sex difference in primate periodicities; and 4) there is some evidence that sex differences in enamel formation rates may make a minor contribution to canine sexual dimorphism in Papio and Cercopithecus. These findings strongly suggest that in both catarrhines and platyrrhines prolongation of male canine growth is the primary mechanism by which canine crown sexual dimorphism is achieved.


Assuntos
Catarrinos/anatomia & histologia , Dente Canino/anatomia & histologia , Platirrinos/anatomia & histologia , Caracteres Sexuais , Animais , Esmalte Dentário/anatomia & histologia , Esmalte Dentário/crescimento & desenvolvimento , Feminino , Masculino , Coroa do Dente/anatomia & histologia
15.
J Cell Sci ; 120(Pt 22): 3952-64, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17956945

RESUMO

Topoisomerase II (topo II) is a major component of mitotic chromosomes, and its unique decatenating activity has been implicated in many aspects of chromosome dynamics, of which chromosome segregation is the most seriously affected by loss of topo II activity in living cells. There is considerable evidence that topo II plays a role at the centromere including: the centromere-specific accumulation of topo II protein; cytogenetic/molecular mapping of the catalytic activity of topo II to active centromeres; the influence of sumoylated topo II on sister centromere cohesion; and its involvement in the activation of a Mad2-dependent spindle checkpoint. By using a human cell line with a conditional-lethal mutation in the gene encoding DNA topoisomerase IIalpha, we find that depletion of topo IIalpha, while leading to a disorganised metaphase plate, does not have any overt effect on general assembly of kinetochores. Fluorescence in situ hybridisation suggested that centromeres segregate normally, most segregation errors being chromatin bridges involving longer chromosome arms. Strikingly, a linear human X centromere-based minichromosome also displayed a significantly increased rate of missegregation. This sensitivity to depletion of topo IIalpha might be linked to structural alterations within the centromere domain, as indicated by a significant shortening of the distance across metaphase sister centromeres and the abnormal persistence of PICH-coated connections between segregating chromatids.


Assuntos
Anáfase , DNA Helicases/metabolismo , DNA Topoisomerases Tipo II/deficiência , Proteínas de Ligação a DNA/deficiência , Cinetocoros/metabolismo , Metáfase , Antígenos de Neoplasias , Segregação de Cromossomos , Cromossomos Humanos/metabolismo , Humanos , Isoenzimas/metabolismo
16.
Nat Cell Biol ; 8(10): 1133-42, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16998479

RESUMO

The reversible condensation of chromosomes during cell division remains a classic problem in cell biology. Condensation requires the condensin complex in certain experimental systems, but not in many others. Anaphase chromosome segregation almost always fails in condensin-depleted cells, leading to the formation of prominent chromatin bridges and cytokinesis failure. Here, live-cell analysis of chicken DT40 cells bearing a conditional knockout of condensin subunit SMC2 revealed that condensin-depleted chromosomes abruptly lose their compact architecture during anaphase and form massive chromatin bridges. The compact chromosome structure can be preserved and anaphase chromosome segregation rescued by preventing the targeting subunit Repo-Man from recruiting protein phosphatase 1 (PP1) to chromatin at anaphase onset. This study identifies an activity critical for mitotic chromosome structure that is inactivated by Repo-Man-PP1 during anaphase. This activity, provisionally termed 'regulator of chromosome architecture' (RCA), cooperates with condensin to preserve the characteristic chromosome architecture during mitosis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose , Complexos Multiproteicos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Anáfase , Animais , Células Cultivadas , Galinhas , Cromatina/metabolismo , Segregação de Cromossomos , Cromossomos/química , Humanos , Proteínas Nucleares , Proteína Fosfatase 1 , Fuso Acromático/metabolismo
17.
Chromosoma ; 115(1): 60-74, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16267674

RESUMO

Chromosome engineering has allowed the generation of an extensive and well-defined series of linear human X centromere-based minichromosomes, which has been used to investigate the influence of size and structure on chromosome segregation in vertebrate cells. A clear relationship between overall chromosome size and mitotic stability was detected, with decreasing size associated with increasing loss rates. In chicken DT40, the lower size limit for prolonged mitotic stability is approximately 550 kb: at 450 kb, there was a dramatic increase in chromosome loss, while structures of approximately 200 kb could not be recovered. In human HT1080 cells, the size threshold for mitotic stability is approximately 1.6 Mb. Minichromosomes of 0.55-1.0 Mb can be recovered, but display high loss rates. However, all minichromosomes examined exhibited more segregation errors than normal chromosomes in HT1080 cells. This error rate increases with decreased size and correlates with reduced levels of CENP-A and Aurora B. In mouse LA-9 and Indian muntjac FM7 cells, the size requirements for mitotic stability are much greater. In mouse, a human 2.7-Mb minichromosome is rarely able to propagate a kinetochore and behaves acentrically. In Indian muntjac, CENP-C associates with the human minichromosome, but the mitotic apparatus appears unable to handle its segregation.


Assuntos
Cromossomos , Vertebrados/genética , Animais , Sequência de Bases , Southern Blotting , Centrômero , Galinhas , Cromossomos Humanos X , Primers do DNA , DNA Recombinante , Eletroforese em Gel de Campo Pulsado , Humanos , Mitose , Hibridização de Ácido Nucleico
18.
J Psychol ; 139(5): 426-38, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16285213

RESUMO

Twenty-nine first-time mothers completed the Beck Depression Inventory (A. T. Beck, C. H. Ward, M. Mendelson, J. Mock, & J. Erbaugh, 1961) at Time 1 (3rd trimester) and at Time 2 (3-6 months after delivery). At Time 1, women described each of 20 self-aspects by repeatedly selecting from a list of 36 traits; they also reported the size of their social support network in a structured interview. At Time 2, the new mothers completed a short measure of mother role stress and described postpartum difficulties to an interviewer. The authors used HIerarchical CLASses (HICLAS; P. De Boeck & S. Rosenberg, 1988) to idiographically model each woman's self-descriptive data and to identify the class that contained each woman's most superordinate (cardinal) traits, which were then coded either as agentic or social-emotional. Postpartum difficulty predicted Time 2 dejection, but mother role stress and social network size did not. However, the content of the most superordinate trait class moderated the latter two effects. New mothers coded as agentic were more dejected than were new mothers coded as social-emotional when there was high mother role stress and when there was a large social support network.


Assuntos
Depressão Pós-Parto/psicologia , Mães/psicologia , Paridade , Autoeficácia , Autoavaliação (Psicologia) , Apoio Social , Adulto , Feminino , Seguimentos , Identidade de Gênero , Humanos , Entrevista Psicológica , Determinação da Personalidade , Inventário de Personalidade , Gravidez
19.
Chromosome Res ; 13(6): 637-48, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16170628

RESUMO

Topoisomerase II (Topo II) is a major component of mitotic chromosomes and its unique decatenating activity has been implicated in many aspects of chromosome dynamics including DNA replication, transcription, recombination, chromosome condensation and segregation. Of these, chromosome segregation is the most seriously affected by loss of Topo II, most probably because of residual catenations between sister chromatids. At metaphase, vertebrate chromatids are attached principally through their centromeric regions. Intriguingly, evidence has recently been presented for Topo II cleavage activity within the centromeric alpha-satellite DNA arrays of the human X and Y chromosomes. In this report we extend these observations by mapping distinct sites of Topo II cleavage activity within the alpha-satellite array of human chromosome 11. A single major site of cleavage has been assigned within the centromeric DNA of each of three independently derived, and active, 11 centromeres. Unlike the X and Y centromeres, where cleavage sites mapped close to (within 150 kb of) the short arm edge of the arrays, on chromosome 11, the cleavage sites lie many hundreds of kilobases into each alpha-satellite array. We also demonstrate that catalytically active Topo II is concentrated within the centromere domain through an extended period of G2 and M, with levels declining in G1 and S.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA Satélite/genética , Sequência de Bases , Cromossomos Humanos Par 11 , Primers do DNA , Eletroforese em Gel de Campo Pulsado , Humanos , Células Híbridas , Hidrólise , Metáfase , Reação em Cadeia da Polimerase
20.
EMBO J ; 21(19): 5269-80, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12356743

RESUMO

Dissection of human centromeres is difficult because of the lack of landmarks within highly repeated DNA. We have systematically manipulated a single human X centromere generating a large series of deletion derivatives, which have been examined at four levels: linear DNA structure; the distribution of constitutive centromere proteins; topoisomerase IIalpha cleavage activity; and mitotic stability. We have determined that the human X major alpha-satellite locus, DXZ1, is asymmetrically organized with an active subdomain anchored approximately 150 kb in from the Xp-edge. We demonstrate a major site of topoisomerase II cleavage within this domain that can shift if juxtaposed with a telomere, suggesting that this enzyme recognizes an epigenetic determinant within the DXZ1 chromatin. The observation that the only part of the DXZ1 locus shared by all deletion derivatives is a highly restricted region of <50 kb, which coincides with the topo isomerase II cleavage site, together with the high levels of cleavage detected, identify topoisomerase II as a major player in centromere biology.


Assuntos
Centrômero/genética , Cromossomos Humanos X/genética , DNA Topoisomerases Tipo II/metabolismo , Antígenos de Neoplasias , Sequência de Bases , Linhagem Celular , Centrômero/fisiologia , Mapeamento Cromossômico , Cromossomos Humanos X/ultraestrutura , Primers do DNA , Proteínas de Ligação a DNA , Humanos , Hibridização in Situ Fluorescente , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase/métodos , Mapeamento por Restrição , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA