Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791221

RESUMO

Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves lives, its efficacy is limited as it fails to neutralize certain serine proteases. Hence, developing new-generation antivenoms, like monoclonal antibodies, is crucial. This study aimed to explore the inhibitory potential of synthetic peptides homologous to the CDR3 regions of a monoclonal antibody targeting a snake venom thrombin-like enzyme (SVTLE) from B. atrox venom. Five synthetic peptides were studied, all stable against hydrolysis by venoms and serine proteases. Impressively, four peptides demonstrated uncompetitive SVTLE inhibition, with Ki values ranging from 10-6 to 10-7 M. These findings underscore the potential of short peptides homologous to CDR3 regions in blocking snake venom toxins, suggesting their promise as the basis for new-generation antivenoms. Thus, this study offers potential advancements in combatting snakebites, addressing a critical public health challenge in tropical and subtropical regions.


Assuntos
Anticorpos Monoclonais , Bothrops , Peptídeos , Serina Proteases , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Serina Proteases/química , Serina Proteases/metabolismo , Antivenenos/química , Antivenenos/imunologia , Antivenenos/farmacologia , Regiões Determinantes de Complementaridade/química , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/química , Sequência de Aminoácidos , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
2.
Toxins (Basel) ; 15(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37756010

RESUMO

Accidents with snakes are responsible for about 32,000 deaths annually in sub-Saharan Africa, caused mostly by snakes from the genus Bitis, in particular Bitis arietans. B. arietans venom is composed of a complex mixture of toxins, mainly metalloproteases, serine proteases, phospholipases, lectins, and disintegrins. In this work, we compared two approaches to anti-B. arietans antivenom production: immunization with crude snake venom ("traditional approach") and immunization with selected key toxins isolated from the snake venom ("toxin oriented" approach). Fractions from B. arietans venom were isolated by size exclusion chromatography. Crude venom and samples containing serine proteases or metalloproteases were selected for the immunization of BALB/c mice. Anti-B. arietans and anti-serine proteases plasmas showed a similar recognition profile and higher titers and affinity than the anti-metalloproteases plasma. Cross-recognition of other Bitis venoms was observed, but with low intensity. Although the plasma of all experimental groups inhibited the enzymatic activity of B. arietans venom in vitro, in vivo protection was not achieved. Our results have shown limitations in both approaches considered. Based on this, we proposed a model of polyclonal, species-specific, monovalent antivenoms that could be used as a base to produce customizable polyvalent sera for use in sub-Saharan Africa.


Assuntos
Antivenenos , Toxinas Biológicas , Animais , Camundongos , Antivenenos/farmacologia , Venenos de Serpentes , Serina Endopeptidases , Serina Proteases , Camundongos Endogâmicos BALB C
3.
Toxins (Basel) ; 15(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37104202

RESUMO

Bitis arietans is a medically important snake found in Sub-Saharan Africa. The envenomation is characterized by local and systemic effects, and the lack of antivenoms aggravates the treatment. This study aimed to identify venom toxins and develop antitoxins. The F2 fraction obtained from Bitis arietans venom (BaV) demonstrated the presence of several proteins in its composition, including metalloproteases. Titration assays carried out together with the immunization of mice demonstrated the development of anti-F2 fraction antibodies by the animals. The determination of the affinity of antibodies against different Bitis venoms was evaluated, revealing that only BaV had peptides recognized by anti-F2 fraction antibodies. In vivo analyses demonstrated the hemorrhagic capacity of the venom and the effectiveness of the antibodies in inhibiting up to 80% of the hemorrhage and 0% of the lethality caused by BaV. Together, the data indicate: (1) the prevalence of proteins that influence hemostasis and envenomation; (2) the effectiveness of antibodies in inhibiting specific activities of BaV; and (3) isolation and characterization of toxins can become crucial steps in the development of new alternative treatments. Thus, the results obtained help in understanding the envenoming mechanism and may be useful for the study of new complementary therapies.


Assuntos
Mordeduras de Serpentes , Viperidae , Camundongos , Animais , Viperidae/metabolismo , Venenos de Serpentes/metabolismo , Antivenenos , Metaloproteases/metabolismo , Hemorragia , Imunoglobulina G/metabolismo
4.
Toxins, v. 15, n. 9, 584, set. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5116

RESUMO

Accidents with snakes are responsible for about 32,000 deaths annually in sub-Saharan Africa, caused mostly by snakes from the genus Bitis, in particular Bitis arietans. B. arietans venom is composed of a complex mixture of toxins, mainly metalloproteases, serine proteases, phospholipases, lectins, and disintegrins. In this work, we compared two approaches to anti-B. arietans antivenom production: immunization with crude snake venom (“traditional approach”) and immunization with selected key toxins isolated from the snake venom (“toxin oriented” approach). Fractions from B. arietans venom were isolated by size exclusion chromatography. Crude venom and samples containing serine proteases or metalloproteases were selected for the immunization of BALB/c mice. Anti-B. arietans and anti-serine proteases plasmas showed a similar recognition profile and higher titers and affinity than the anti-metalloproteases plasma. Cross-recognition of other Bitis venoms was observed, but with low intensity. Although the plasma of all experimental groups inhibited the enzymatic activity of B. arietans venom in vitro, in vivo protection was not achieved. Our results have shown limitations in both approaches considered. Based on this, we proposed a model of polyclonal, species-specific, monovalent antivenoms that could be used as a base to produce customizable polyvalent sera for use in sub-Saharan Africa.

5.
Toxins, v. 15, n. 4, 264, abr. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4897

RESUMO

Bitis arietans is a medically important snake found in Sub-Saharan Africa. The envenomation is characterized by local and systemic effects, and the lack of antivenoms aggravates the treatment. This study aimed to identify venom toxins and develop antitoxins. The F2 fraction obtained from Bitis arietans venom (BaV) demonstrated the presence of several proteins in its composition, including metalloproteases. Titration assays carried out together with the immunization of mice demonstrated the development of anti-F2 fraction antibodies by the animals. The determination of the affinity of antibodies against different Bitis venoms was evaluated, revealing that only BaV had peptides recognized by anti-F2 fraction antibodies. In vivo analyses demonstrated the hemorrhagic capacity of the venom and the effectiveness of the antibodies in inhibiting up to 80% of the hemorrhage and 0% of the lethality caused by BaV. Together, the data indicate: (1) the prevalence of proteins that influence hemostasis and envenomation; (2) the effectiveness of antibodies in inhibiting specific activities of BaV; and (3) isolation and characterization of toxins can become crucial steps in the development of new alternative treatments. Thus, the results obtained help in understanding the envenoming mechanism and may be useful for the study of new complementary therapies.

6.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136544

RESUMO

Snakebite envenomation is considered a neglected tropical disease, affecting tens of thousands of people each year. The recommended treatment is the use of antivenom, which is composed of immunoglobulins or immunoglobulin fragments obtained from the plasma of animals hyperimmunized with one (monospecific) or several (polyspecific) venoms. In this review, the efforts made in the improvement of the already available antivenoms and the development of new antivenoms, focusing on snakes of medical importance from sub-Saharan Africa and Latin America, are described. Some antivenoms currently used are composed of whole IgGs, whereas others use F(ab')2 fragments. The classic methods of attaining snake antivenoms are presented, in addition to new strategies to improve their effectiveness. Punctual changes in immunization protocols, in addition to the use of cross-reactivity between venoms from different snakes for the manufacture of more potent and widely used antivenoms, are presented. It is known that venoms are a complex mixture of components; however, advances in the field of antivenoms have shown that there are key toxins that, if effectively blocked, are capable of reversing the condition of in vivo envenomation. These studies provide an opportunity for the use of monoclonal antibodies in the development of new-generation antivenoms. Thus, monoclonal antibodies and their fragments are described as a possible alternative for the production of antivenoms, regardless of the venom. This review also highlights the challenges associated with their development.


Assuntos
Antivenenos , Mordeduras de Serpentes , Animais , Anticorpos Monoclonais , Antivenenos/uso terapêutico , Humanos , Fragmentos de Imunoglobulinas , Mordeduras de Serpentes/tratamento farmacológico , Serpentes
7.
Nanomaterials (Basel) ; 12(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35055205

RESUMO

New forms of cancer treatment, which are effective, have simple manufacturing processes, and easily transportable, are of the utmost necessity. In this work, a methodology for the synthesis of radioactive Gold-198 nanoparticles without the use of surfactants was described. The nuclear activated Gold-198 foils were transformed into H198AuCl4 by dissolution using aqua regia, following a set of steps in a specially designed leak-tight setup. Gold-198 nanoparticles were synthesized using a citrate reduction stabilized with PEG. In addition, TEM results for the non-radioactive product presented an average size of 11.0 nm. The DLS and results for the radioactive 198AuNPs presented an average size of 8.7 nm. Moreover, the DLS results for the PEG-198AuNPs presented a 32.6 nm average size. Cell line tests showed no cytotoxic effect in any period and the concentrations were evaluated. Furthermore, in vivo testing showed a high biological uptake in the tumor and a cancer growth arrest.

8.
Braz J Pharm Sci, v. 58, e20867, dez. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4760

RESUMO

The treatment with hyperimmune sera constitute the only specific and effective therapy available against snakebite envenomation, most common in developing countries. Serum quality is an important factor on patient recovery time and in the incidence of death and permanent disability. To date, most sera consist of pepsin digested IgG antibodies harvested from hyperimmune animals. The use of animal derived enzymes, such as pepsin, to digest IgG, constitute a source of adventitious agents and contaminants, such as porcine circovirus. The present study aims to evaluate the use of the plant derived enzymes bromelain and ficin, as an alternative to pepsin. To this purpose, horse serum immunized against Bothrops venoms was purified with caprylic acid and digested with bromelain or ficin. SDS-PAGE results evidence the formation of F(ab)’2 fragments and suggest that a digestion time superior to 8 hours may be required to completely digest the antibodies with bromelain or ficin. F(ab)’2 fragments obtained by digestion with either bromelain or ficin digestion preserved the ability to recognize Bothrops sp. venom in western blotting assays. Therefore, both enzymes are suitable for use in large-scale production, minimizing contamination risks and increasing safety and efficiency of serotherapy treatments.

9.
Braz. J. Pharm. Sci. (Online) ; 58: e20867, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420402

RESUMO

Abstract The treatment with hyperimmune sera constitute the only specific and effective therapy available against snakebite envenomation, most common in developing countries. Serum quality is an important factor on patient recovery time and in the incidence of death and permanent disability. To date, most sera consist of pepsin digested IgG antibodies harvested from hyperimmune animals. The use of animal derived enzymes, such as pepsin, to digest IgG, constitute a source of adventitious agents and contaminants, such as porcine circovirus. The present study aims to evaluate the use of the plant derived enzymes bromelain and ficin, as an alternative to pepsin. To this purpose, horse serum immunized against Bothrops venoms was purified with caprylic acid and digested with bromelain or ficin. SDS-PAGE results evidence the formation of F(ab)'2 fragments and suggest that a digestion time superior to 8 hours may be required to completely digest the antibodies with bromelain or ficin. F(ab)'2 fragments obtained by digestion with either bromelain or ficin digestion preserved the ability to recognize Bothrops sp. venom in western blotting assays. Therefore, both enzymes are suitable for use in large-scale production, minimizing contamination risks and increasing safety and efficiency of serotherapy treatments.

10.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200140, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33995513

RESUMO

BACKGROUND: Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. METHODS: Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. RESULTS: Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. CONCLUSION: Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.

11.
J. venom. anim. toxins incl. trop. dis ; 27: e20200140, 2021. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1250256

RESUMO

Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. Methods Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. Results Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. Conclusion Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.(AU)


Assuntos
Radiação Ionizante , Tétano , Ensaio de Imunoadsorção Enzimática , Raios gama , Toxina Tetânica , Cobalto
12.
J Venom Anim Toxins Incl Trop Dis, v. 27, e20200140, abr. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3734

RESUMO

Background: Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. Methods: Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. Results: Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. Conclusion: Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.

13.
Toxicon ; 178: 13-19, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32067999

RESUMO

Accidents by freshwater stingrays are common in northern Brazil, there is no specific therapy for high morbidity and local tissue destruction. The irradiation of venoms and toxins by ionizing radiation has been used to produce appropriate immunogens for the production of antisera. We planned to study the efficacy of stinging mucus irradiation in the production of antisera, with serum neutralization assays of edematogenic activity and quantification of cytokines performed in animal models of immunization with native and irradiated mucus of Paratrygon aiereba, a large freshwater stingray. Antiserum potency and its cross-reactivity with mucus from other freshwater stingrays were detected by ELISA. Immunization models demonstrated the ability to stimulate a strong humoral response with elevated levels of serum IgG detectable by ELISA, and both native and irradiated mucus were immunogenic and capable of recognizing mucus proteins from other freshwater neotropical stingrays. Mucus P. aiereba causes cellular and humoral adaptive immune responses in cells of immunized mice producing antibodies and cytokines such as TNF-α, IL-6 and IL-17. Rabbit antisera immunized with mucus from P. aiereba irradiated at 2 kGy showed a significant reduction of mucus-induced edematogenic activity in mice. Our data suggest that the use of antisera against freshwater stingray mucus show the possibility of specific therapy for these accidents.


Assuntos
Mordeduras e Picadas/imunologia , Elasmobrânquios/fisiologia , Soros Imunes/imunologia , Animais , Brasil , Edema , Ensaio de Imunoadsorção Enzimática , Água Doce , Camundongos , Modelos Teóricos , Muco , Dor , Coelhos , Rajidae
14.
Artigo em Inglês | MEDLINE | ID: mdl-31467513

RESUMO

BACKGROUND: Bufonid parotoid macrogland secretion contains several low molecular mass molecules, such as alkaloids and steroids. Nevertheless, its protein content is poorly understood. Herein, we applied a sample preparation methodology that allows the analysis of viscous matrices in order to examine its proteins. METHODS: Duttaphrynus melanostictus parotoid macrogland secretion was submitted to ion-exchange batch sample preparation, yielding two fractions: salt-displaced fraction and acid-displaced fraction. Each sample was then fractionated by anionic-exchange chromatography, followed by in-solution proteomic analysis. RESULTS: Forty-two proteins could be identified, such as acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, galectin and histone. Moreover, de novo analyses yielded 153 peptides, whereas BLAST analyses corroborated some of the proteomic-identified proteins. Furthermore, the de novo peptide analyses indicate the presence of proteins related to apoptosis, cellular structure, catalysis and transport processes. CONCLUSIONS: Proper sample preparation allowed the proteomic and de novo identification of different proteins in the D. melanostictus parotoid macrogland secretion. These results may increase the knowledge about the universe of molecules that compose amphibian skin secretion, as well as to understand their biological/physiological role in the granular gland.

15.
Fish Shellfish Immunol ; 93: 832-840, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31425832

RESUMO

Stingrays skin secretions are largely studied due to the human envenoming medical relevance of the sting puncture that evolves to inflammatory events, including necrosis. Such toxic effects can be correlated to the biochemical composition of the sting mucus, according to the literature. Fish skin plays important biological roles, such as the control of the osmotic pressure gradient, protection against mechanical forces and microorganism infections. The mucus, on the other hand, is a rich and complex fluid, acting on swimming, nutrition and the innate immune system. The elasmobranch's epidermis is a tissue composed mainly by mucus secretory cells, and marine stingrays have already been described to present secretory glands spread throughout the body. Little is known about the biochemical composition of the stingray mucus, but recent studies have corroborated the importance of mucus in the envenomation process. Aiming to assess the mucus composition, a new non-invasive mucus collection method was developed that focused on peptides and proteins, and biological assays were performed to analyze the toxic and immune activities of the Hypanus americanus mucus. Pathophysiological characterization showed the presence of peptidases on the mucus, as well as the induction of edema and leukocyte recruitment in mice. The fractionated mucus improved phagocytosis on macrophages and showed antimicrobial activity against T. rubrumç. neoformans and C. albicans in vitro. The proteomic analyses showed the presence of immune-related proteins like actin, histones, hemoglobin, and ribosomal proteins. This protein pattern is similar to those reported for other fish mucus and stingray venoms. This is the first report depicting the Hypanus stingray mucus composition, highlighting its biochemical composition and importance for the stingray immune system and the possible role on the envenomation process.


Assuntos
Venenos de Peixe/química , Imunidade Inata , Técnicas Imunológicas/veterinária , Muco/química , Animais , Brasil , Feminino , Imunidade nas Mucosas , Técnicas Imunológicas/métodos , Muco/imunologia , Rajidae
16.
J. venom. anim. toxins incl. trop. dis ; 25: e20190029, 2019. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1020025

RESUMO

Bufonid parotoid macrogland secretion contains several low molecular mass molecules, such as alkaloids and steroids. Nevertheless, its protein content is poorly understood. Herein, we applied a sample preparation methodology that allows the analysis of viscous matrices in order to examine its proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion was submitted to ion-exchange batch sample preparation, yielding two fractions: salt-displaced fraction and acid-displaced fraction. Each sample was then fractionated by anionic-exchange chromatography, followed by in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, galectin and histone. Moreover, de novo analyses yielded 153 peptides, whereas BLAST analyses corroborated some of the proteomic-identified proteins. Furthermore, the de novo peptide analyses indicate the presence of proteins related to apoptosis, cellular structure, catalysis and transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo identification of different proteins in the D. melanostictus parotoid macrogland secretion. These results may increase the knowledge about the universe of molecules that compose amphibian skin secretion, as well as to understand their biological/physiological role in the granular gland.(AU)


Assuntos
Animais , Esteroides , Bufonidae/parasitologia , Proteômica , Alcaloides
17.
Fish Shellfish Immunol. ; 93: 832-840, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17252

RESUMO

Stingrays skin secretions are largely studied due to the human envenoming medical relevance of the sting puncture that evolves to inflammatory events, including necrosis. Such toxic effects can be correlated to the biochemical composition of the sting mucus, according to the literature. Fish skin plays important biological roles, such as the control of the osmotic pressure gradient, protection against mechanical forces and microorganism infections. The mucus, on the other hand, is a rich and complex fluid, acting on swimming, nutrition and the innate immune system. The elasmobranch's epidermis is a tissue composed mainly by mucus secretory cells, and marine stingrays have already been described to present secretory glands spread throughout the body. Little is known about the biochemical composition of the stingray mucus, but recent studies have corroborated the importance of mucus in the envenomation process. Aiming to assess the mucus composition, a new non-invasive mucus collection method was developed that focused on peptides and proteins, and biological assays were performed to analyze the toxic and immune activities of the Hypanus americanus mucus. Pathophysiological characterization showed the presence of peptidases on the mucus, as well as the induction of edema and leukocyte recruitment in mice. The fractionated mucus improved phagocytosis on macrophages and showed antimicrobial activity against T. rubrumç. neoformans and C. albicans in vitro. The proteomic analyses showed the presence of immune-related proteins like actin, histones, hemoglobin, and ribosomal proteins. This protein pattern is similar to those reported for other fish mucus and stingray venoms. This is the first report depicting the Hypanus stingray mucus composition, highlighting its biochemical composition and importance for the stingray immune system and the possible role on the envenomation process.

18.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17172

RESUMO

Background: Bufonid parotoid macrogland secretion contains several low molecular mass molecules, such as alkaloids and steroids. Nevertheless, its protein content is poorly understood. Herein, we applied a sample preparation methodology that allows the analysis of viscous matrices in order to examine its proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion was submitted to ion-exchange batch sample preparation, yielding two fractions: salt-displaced fraction and acid-displaced fraction. Each sample was then fractionated by anionic-exchange chromatography, followed by in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, galectin and histone. Moreover, de novo analyses yielded 153 peptides, whereas BLAST analyses corroborated some of the proteomic-identified proteins. Furthermore, the de novo peptide analyses indicate the presence of proteins related to apoptosis, cellular structure, catalysis and transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo identification of different proteins in the D. melanostictus parotoid macrogland secretion. These results may increase the knowledge about the universe of molecules that compose amphibian skin secretion, as well as to understand their biological/physiological role in the granular gland.

19.
Fish Shellfish Immunol, v. 93, p. 832-840, oct. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2862

RESUMO

Stingrays skin secretions are largely studied due to the human envenoming medical relevance of the sting puncture that evolves to inflammatory events, including necrosis. Such toxic effects can be correlated to the biochemical composition of the sting mucus, according to the literature. Fish skin plays important biological roles, such as the control of the osmotic pressure gradient, protection against mechanical forces and microorganism infections. The mucus, on the other hand, is a rich and complex fluid, acting on swimming, nutrition and the innate immune system. The elasmobranch's epidermis is a tissue composed mainly by mucus secretory cells, and marine stingrays have already been described to present secretory glands spread throughout the body. Little is known about the biochemical composition of the stingray mucus, but recent studies have corroborated the importance of mucus in the envenomation process. Aiming to assess the mucus composition, a new non-invasive mucus collection method was developed that focused on peptides and proteins, and biological assays were performed to analyze the toxic and immune activities of the Hypanus americanus mucus. Pathophysiological characterization showed the presence of peptidases on the mucus, as well as the induction of edema and leukocyte recruitment in mice. The fractionated mucus improved phagocytosis on macrophages and showed antimicrobial activity against T. rubrumç. neoformans and C. albicans in vitro. The proteomic analyses showed the presence of immune-related proteins like actin, histones, hemoglobin, and ribosomal proteins. This protein pattern is similar to those reported for other fish mucus and stingray venoms. This is the first report depicting the Hypanus stingray mucus composition, highlighting its biochemical composition and importance for the stingray immune system and the possible role on the envenomation process.

20.
J Venom Anim Toxins Incl Trop Dis, v. 25, e20190029, ago. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2826

RESUMO

Background: Bufonid parotoid macrogland secretion contains several low molecular mass molecules, such as alkaloids and steroids. Nevertheless, its protein content is poorly understood. Herein, we applied a sample preparation methodology that allows the analysis of viscous matrices in order to examine its proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion was submitted to ion-exchange batch sample preparation, yielding two fractions: salt-displaced fraction and acid-displaced fraction. Each sample was then fractionated by anionic-exchange chromatography, followed by in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, galectin and histone. Moreover, de novo analyses yielded 153 peptides, whereas BLAST analyses corroborated some of the proteomic-identified proteins. Furthermore, the de novo peptide analyses indicate the presence of proteins related to apoptosis, cellular structure, catalysis and transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo identification of different proteins in the D. melanostictus parotoid macrogland secretion. These results may increase the knowledge about the universe of molecules that compose amphibian skin secretion, as well as to understand their biological/physiological role in the granular gland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...