Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(3): 484-494, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37842771

RESUMO

Understanding and controlling microbial adhesion is a critical challenge in biomedical research, given the profound impact of bacterial infections on global health. Many facets of bacterial adhesion, including the distribution of adhesion forces across the cell wall, remain poorly understood. While a recent 'patchy colloid' model has shed light on adhesion in Gram-negative Escherichia coli cells, a corresponding model for Gram-positive cells has been elusive. In this study, we employ single cell force spectroscopy to investigate the adhesion force of Staphylococcus aureus. Normally, only one contact point of the entire bacterial surface is measured. However, by using a sine-shaped surface and recording force-distance curves along a path perpendicular to the rippled structures, we can characterize almost a hemisphere of one and the same bacterium. This unique approach allows us to study a greater number of contact points between the bacterium and the surface compared to conventional flat substrata. Distributed over the bacterial surface, we identify sites of higher and lower adhesion, which we call 'patchy adhesion', reminiscent of the patchy colloid model. The experimental results show that only some cells exhibit particularly strong adhesion at certain locations. To gain a better understanding of these locations, a geometric model of the bacterial cell surface was created. The experimental results were best reproduced by a model that features a few (5-6) particularly strong adhesion sites (diameter about 250 nm) that are widely distributed over the cell surface. Within the simulated patches, the number of molecules or their individual adhesive strength is increased. A more detailed comparison shows that simple geometric considerations for interacting molecules are not sufficient, but rather strong angle-dependent molecule-substratum interactions are required. We discuss the implications of our results for the development of new materials and the design and analysis of future studies.


Assuntos
Aderência Bacteriana , Staphylococcus aureus , Propriedades de Superfície , Microscopia de Força Atômica/métodos , Parede Celular , Bactérias , Coloides
2.
ACS Biomater Sci Eng ; 8(4): 1476-1485, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263544

RESUMO

Research into materials for medical application draws inspiration from naturally occurring or synthesized surfaces, just like many other research directions. For medical application of materials, particular attention has to be paid to biocompatibility, osseointegration, and bacterial adhesion behavior. To understand their properties and behavior, experimental studies with natural materials such as teeth are strongly required. The results, however, may be highly case-dependent because natural surfaces have the disadvantage of being subject to wide variations, for instance in their chemical composition, structure, morphology, roughness, and porosity. A synthetic surface which mimics enamel in its performance with respect to bacterial adhesion and biocompatibility would, therefore, facilitate systematic studies much better. In this study, we discuss the possibility of using hydroxyapatite (HAp) pellets to simulate the surfaces of teeth and show the possibility and limitations of using a model surface. We performed single-cell force spectroscopy with single Staphylococcus aureus cells to measure adhesion-related parameters such as adhesion force and rupture length of cell wall proteins binding to HAp and enamel. We also examine the influence of blood plasma and saliva on the adhesion properties of S. aureus. The results of these measurements are matched to water wettability, elemental composition of the samples, and the change in the macromolecules adsorbed over time on the surface. We found that the adhesion properties of S. aureus were similar on HAp and enamel samples under all conditions: Significant decreases in adhesion strength were found equally in the presence of saliva or blood plasma on both surfaces. We therefore conclude that HAp pellets are a good alternative for natural dental material. This is especially true when slight variations in the physicochemical properties of the natural materials may affect the experimental series.


Assuntos
Durapatita , Staphylococcus aureus , Esmalte Dentário , Durapatita/química , Durapatita/metabolismo , Durapatita/farmacologia , Análise Espectral , Staphylococcus aureus/metabolismo , Propriedades de Superfície
3.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769382

RESUMO

The adhesion of Staphylococcus aureus to abiotic surfaces is crucial for establishing device-related infections. With a high number of single-cell force spectroscopy measurements with genetically modified S. aureus cells, this study provides insights into the adhesion process of the pathogen to abiotic surfaces of different wettability. Our results show that S. aureus utilizes different cell wall molecules and interaction mechanisms when binding to hydrophobic and hydrophilic surfaces. We found that covalently bound cell wall proteins strongly interact with hydrophobic substrates, while their contribution to the overall adhesion force is smaller on hydrophilic substrates. Teichoic acids promote adhesion to hydrophobic surfaces as well as to hydrophilic surfaces. This, however, is to a lesser extent. An interplay of electrostatic effects of charges and protein composition on bacterial surfaces is predominant on hydrophilic surfaces, while it is overshadowed on hydrophobic surfaces by the influence of the high number of binding proteins. Our results can help to design new models of bacterial adhesion and may be used to interpret the adhesion of other microorganisms with similar surface properties.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Silício/metabolismo , Staphylococcus aureus/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
5.
Sci Rep ; 10(1): 20992, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268809

RESUMO

Staphylococcus aureus is a common cause of catheter-related blood stream infections (CRBSI). The bacterium has the ability to form multilayered biofilms on implanted material, which usually requires the removal of the implanted medical device. A first major step of this biofilm formation is the initial adhesion of the bacterium to the artificial surface. Here, we used single-cell force spectroscopy (SCFS) to study the initial adhesion of S. aureus to central venous catheters (CVCs). SCFS performed with S. aureus on the surfaces of naïve CVCs produced comparable maximum adhesion forces on three types of CVCs in the low nN range (~ 2-7 nN). These values were drastically reduced, when CVC surfaces were preincubated with human blood plasma or human serum albumin, and similar reductions were observed when S. aureus cells were probed with freshly explanted CVCs withdrawn from patients without CRBSI. These findings indicate that the initial adhesion capacity of S. aureus to CVC tubing is markedly reduced, once the CVC is inserted into the vein, and that the risk of contamination of the CVC tubing by S. aureus during the insertion process might be reduced by a preconditioning of the CVC surface with blood plasma or serum albumin.


Assuntos
Aderência Bacteriana , Infecções Relacionadas a Cateter/etiologia , Cateteres Venosos Centrais/microbiologia , Infecções Estafilocócicas/etiologia , Staphylococcus aureus/metabolismo , Adulto , Infecções Relacionadas a Cateter/microbiologia , Humanos , Cinética , Plasma , Fatores de Risco , Albumina Sérica , Infecções Estafilocócicas/microbiologia , Propriedades de Superfície
6.
Langmuir ; 36(45): 13415-13425, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141584

RESUMO

Surface patterning in the micro- and nanometer-range by means of pulsed laser interference has repeatedly proven to be a versatile tool for surface functionalization. With these techniques, however, the surface is often changed not only in terms of morphology but also in terms of surface chemistry. In this study, we present an in-depth investigation of the chemical surface modification occurring during surface patterning of copper by ultrashort pulsed direct laser interference patterning (USP-DLIP). A multimethod approach of parallel analysis using visualizing, topography-sensitive, and spectroscopic techniques allowed a detailed quantification of surface morphology as well as composition and distribution of surface chemistry related to both processing and atmospheric aging. The investigations revealed a heterogeneous surface composition separated in peak and valley regions predominantly consisting of Cu2O, as well as superficial agglomerations of CuO and carbon species. The evaluation was supported by a modeling approach for the quantification of XPS results in relation to heterogeneous surface composition, which was observed by means of a combination of different spectroscopic techniques. The overall results provide a detailed understanding of the chemical and topographical surface modification during USP-DLIP, which allows a more targeted use of this technology for surface functionalization.

7.
Virulence ; 11(1): 1453-1465, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33108253

RESUMO

Candida albicans-related bloodstream infections are often associated with infected central venous catheters (CVC) triggered by microbial adhesion and biofilm formation. We utilized single-cell force spectroscopy (SCFS) and flow chamber models to investigate the adhesion behavior of C. albicans yeast cells and germinated cells to naïve and human blood plasma (HBP)-coated CVC tubing. Germinated cells demonstrated up to 56.8-fold increased adhesion forces to CVC surfaces when compared to yeast cells. Coating of CVCs with HBP significantly increased the adhesion of 60-min germinated cells but not of yeast cells and 30-min germinated cells. Under flow conditions comparable to those in major human veins, germinated cells displayed a flow directional-orientated adhesion pattern to HBP-coated CVC material, suggesting the germ tip to serve as the major adhesive region. None of the above-reported phenotypes were observed with germinated cells of an als3Δ deletion mutant, which displayed similar adhesion forces to CVC surfaces as the isogenic yeast cells. Germinated cells of the als3Δ mutant also lacked a clear flow directional-orientated adhesion pattern on HBP-coated CVC material, indicating a central role for Als3 in the adhesion of germinated C. albicans cells to blood exposed CVC surfaces. In the common model of C. albicans, biofilm formation is thought to be mediated primarily by yeast cells, followed by surface-triggered the formation of hyphae. We suggest an extension of this model in which C. albicans germ tubes promote the initial adhesion to blood-exposed implanted medical devices via the germ tube-associated adhesion protein Als3.


Assuntos
Candida albicans/fisiologia , Adesão Celular , Cateteres Venosos Centrais/microbiologia , Materiais Revestidos Biocompatíveis , Proteínas Fúngicas/metabolismo , Plasma/metabolismo , Plasma/microbiologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/patogenicidade , Proteínas Fúngicas/genética , Humanos , Hifas/crescimento & desenvolvimento , Imagem Individual de Molécula
8.
Data Brief ; 32: 106305, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32995396

RESUMO

Data presented in this article describe bacterial and fungal repellent properties of 2D-films and 3D-hydrogels made of different recombinantly produced spider silk proteins based on consensus sequences of Araneus diadematus dragline silk proteins (fibroin 3 and 4). Here, the attachment, growth, and microbial colonization of Streptococcus mutans (S. mutans) as well as Candida albicans (C. albicans) on plane and micro-patterned films were visualized by scanning electron microscopy (SEM). Also, microbial viability data are provided of Escherichia coli (E. coli) and Pichia pastoris (P. pastoris) on hydrogels made of eADF4(C16) and eADF4(C16)-RGD, quantified using the Alamar blue assay. Experimental results, design of a post-operative contamination model of microbes with mammalian cells, and methods in the data article refer to the research paper "Engineered spider silk-based 2D and 3D materials prevent microbial infestation" published recently [1].

9.
Nanoscale ; 12(37): 19267-19275, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32935690

RESUMO

Bacterial adhesion to surfaces is a crucial step in initial biofilm formation. In a combined experimental and computational approach, we studied the adhesion of the pathogenic bacterium Staphylococcus aureus to hydrophilic and hydrophobic surfaces. We used atomic force microscopy-based single-cell force spectroscopy and Monte Carlo simulations to investigate the similarities and differences of adhesion to hydrophilic and hydrophobic surfaces. Our results reveal that binding to both types of surfaces is mediated by thermally fluctuating cell wall macromolecules that behave differently on each type of substrate: on hydrophobic surfaces, many macromolecules are involved in adhesion, yet only weakly tethered, leading to high variance between individual bacteria, but low variance between repetitions with the same bacterium. On hydrophilic surfaces, however, only few macromolecules tether strongly to the surface. Since during every repetition with the same bacterium different macromolecules bind, we observe a comparable variance between repetitions and different bacteria. We expect these findings to be of importance for the understanding of the adhesion behaviour of many bacterial species as well as other microorganisms and even nanoparticles with soft, macromolecular coatings, used e.g. for biological diagnostics.


Assuntos
Aderência Bacteriana , Staphylococcus aureus , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Propriedades de Superfície
10.
Sci Rep ; 9(1): 16267, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700127

RESUMO

Invasion and persistence of bacteria within host cells requires that they adapt to life in an intracellular environment. This adaptation induces bacterial stress through events such as phagocytosis and enhanced nutrient-restriction. During stress, bacteria synthesize a family of proteins known as heat shock proteins (HSPs) to facilitate adaptation and survival. Previously, we determined the Staphylococcus aureus HSP ClpC temporally alters bacterial metabolism and persistence. This led us to hypothesize that ClpC might alter intracellular survival. Inactivation of clpC in S. aureus strain DSM20231 significantly enhanced long-term intracellular survival in human epithelial (HaCaT) and endothelial (EA.hy926) cell lines, without markedly affecting adhesion or invasion. This phenotype was similar across a genetically diverse collection of S. aureus isolates, and was influenced by the toxin/antitoxin encoding locus mazEF. Importantly, MazEF alters mRNA synthesis and/or stability of S. aureus virulence determinants, indicating ClpC may act through the mRNA modulatory activity of MazEF. Transcriptional analyses of total RNAs isolated from intracellular DSM20231 and isogenic clpC mutant cells identified alterations in transcription of α-toxin (hla), protein A (spa), and RNAIII, consistent with the hypothesis that ClpC negatively affects the intracellular survival of S. aureus in non-professional phagocytic cells, via modulation of MazEF and Agr.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Choque Térmico/genética , Interações Hospedeiro-Patógeno , Fagócitos/imunologia , Fagócitos/microbiologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Citotoxicidade Imunológica , Proteínas de Choque Térmico/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Viabilidade Microbiana/imunologia , Mutação , Fagócitos/metabolismo , Infecções Estafilocócicas/microbiologia , Ativação Transcricional , Virulência
11.
Nanoscale ; 11(42): 19713-19722, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31599281

RESUMO

Microbial adhesion and the subsequent formation of resilient biofilms at surfaces are decisively influenced by substrate properties, such as the topography. To date, studies that quantitatively link surface topography and bacterial adhesion are scarce, as both are not straightforward to quantify. To fill this gap, surface morphometry combined with single-cell force spectroscopy was performed on surfaces with irregular topographies on the nano-scale. As surfaces, hydrophobized silicon wafers were used that were etched to exhibit surface structures in the same size range as the bacterial cell wall molecules. The surface structures were characterized by a detailed morphometric analysis based on Minkowski functionals revealing both qualitatively similar features and quantitatively different extensions. We find that as the size of the nanostructures increases, the adhesion forces decrease in a way that can be quantified by the area of the surface that is available for the tethering of cell wall molecules. In addition, we observe a bactericidal effect, which is more pronounced on substrates with taller structures but does not influence adhesion. Our results can be used for a targeted development of 3D-structured materials for/against bio-adhesion. Moreover, the morphometric analysis can serve as a future gold standard for characterizing a broad spectrum of material structures.


Assuntos
Antibacterianos/química , Aderência Bacteriana , Nanoestruturas/química , Silício/química , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
12.
Langmuir ; 34(50): 15253-15258, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30421930

RESUMO

The etching behavior of polycrystalline synthetic hydroxyapatite samples has been evaluated to explore the protective impact of fluoride on a tooth-like model system. Etching rates before and after fluoridation with a NaF solution at pH 6 were determined by atomic force microscopy. Despite a very low F concentration of ca. 0.2 atom % in the hydroxyapatite surface, a very strong effect on the acid resistance can be observed. Depending on the crystal orientation, etching in a NaAc buffer at pH 4.5 was completely inhibited for at least 5 min. The major part of the surface withstood etching even for more than 23 min. These results give new insights into how the amount of incorporated fluoride in hydroxyapatite correlates with its protective impact.

13.
Nanoscale ; 9(28): 10084-10093, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28695218

RESUMO

Bacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface. This gap will be filled by this study using a single-cell force spectroscopy-based method to investigate the contact area between a single bacterial cell of Staphylococcus aureus and a solid substrate. The technique relies on the strong influence of the hydrophobic interaction on bacterial adhesion: by incrementally crossing a very sharp hydrophobic/hydrophilic interface while performing force-distance curves with a single bacterial probe, the bacterial contact area can be determined. Assuming circular contact areas, their radii - determined in our experiments - are in the range from tens of nanometers to a few hundred nanometers. The contact area can be slightly enlarged by a larger load force, yet does not resemble a Hertzian contact, rather, the enlargement is a property of the individual bacterial cell. Additionally, Staphylococcus carnosus has been probed, which is less adherent than S. aureus, yet both bacteria exhibit a similar contact area size. This corroborates the notion that the adhesive strength of bacteria is not a matter of contact area, but rather a matter of which and how many molecules of the bacterial species' cell wall form the contact. Moreover, our method of determining the contact area can be applied to other microorganisms and the results might also be useful for studies using nanoparticles covered with soft, macromolecular coatings.


Assuntos
Aderência Bacteriana , Parede Celular/ultraestrutura , Staphylococcus aureus/ultraestrutura , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Propriedades de Superfície
14.
J Mol Recognit ; 30(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28256775

RESUMO

Streptococcus mutans cells form robust biofilms on human teeth and are strongly related to caries incidents. Hence, understanding the adhesion of S. mutans in the human oral cavity is of major interest for preventive dentistry. In this study, we report on atomic force microscopy-based single-cell force spectroscopy measurements of S. mutans cells to hydroxyapatite surfaces. We observe for almost all measurements a significant difference in adhesion strength for S. mutans as well as for Staphylococcus carnosus cells. However, the increase in adhesion strength after saliva exposure is much higher for S. mutans cells compared to S. carnosus cells. Our results demonstrate that S. mutans cells are well adapted to their natural environment, the oral cavity. This ability promotes the biofilm-forming capability of that species and hence the production of caries-provoking acids. In consequence, understanding the fundamentals of this mechanism may pave a way towards more effective caries-reducing techniques.


Assuntos
Biofilmes/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Saliva/química , Streptococcus mutans/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Durapatita/química , Humanos , Microscopia de Força Atômica , Saliva/microbiologia , Análise de Célula Única , Streptococcus mutans/patogenicidade , Streptococcus mutans/ultraestrutura , Dente/microbiologia , Dente/ultraestrutura
15.
ACS Appl Mater Interfaces ; 8(39): 25848-25855, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27598387

RESUMO

Hydroxyapatite substrates are common biomaterials, yet samples of natural teeth do not meet the demands for well-defined, highly reproducible properties. Pellets of hydroxyapatite were produced via the field assisted sintering technology (FAST) as well as via pressureless sintering (PLS). The applied synthesis routes provide samples of very high density (95%-99% of the crystallographic density) and of very low surface roughness (lower than 1 nm when averaged per 1 µm2). The chemical composition of the raw material (commercial HAP powder) as well as the crystalline structure is maintained by the sintering processes. These specimens can therefore be considered as promising model surfaces for studies on the interactions of biomaterial with surfaces of biological relevance, as demonstrated for the adsorption of BSA proteins.


Assuntos
Esmalte Dentário , Materiais Biocompatíveis , Durapatita , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Anal Chem ; 88(14): 7014-22, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27329347

RESUMO

Increased molecular understanding of multifactorial diseases paves the way for novel therapeutic approaches requiring sophisticated carriers for intracellular delivery of actives. We designed and characterized self-assembling lipid-core nanocapsules for coencapsulation of two poorly soluble natural polyphenols curcumin and resveratrol. The polyphenols were identified as high-potential therapeutic candidates intervening in the intracellular inflammation cascade of chondrocytes during the progress of osteoarthritis. To elucidate the interplay between chondrocytes and nanocapsules and their therapeutic effect, we pursued a complementary analytical approach combining label-free visualization with biological assays. Primary human chondrocytes did not show any adverse effects upon nanocapsule application and coherent anti-Stokes Raman scattering images visualized their intracellular uptake. Further, by systematically blocking different uptake mechanisms, an energy independent uptake into the cells could be identified. Additionally, we tested the therapeutic effect of the polyphenol-loaded carriers on inflamed chondrocytes. Treatment with nanocapsules resulted in a major reduction of nitric oxide levels, a well-known apoptosis trigger during the course of osteoarthritis. For a more profound examination of this protective effect on joint cells, we pursued studies with atomic force microscopy investigations. Significant changes in the cell cytoskeleton as well as prominent dents in the cell membrane upon induced apoptosis were revealed. Interestingly, these effects could not be detected for chondrocytes which were pretreated with the nanocapsules. Overall, besides presenting a sophisticated carrier system for joint application, these results highlight the necessity of establishing combinatorial analytical approaches to elucidate cellular uptake, the interplay of codelivered drugs and their therapeutic effect on the subcellular level.


Assuntos
Condrócitos/metabolismo , Curcumina/metabolismo , Portadores de Fármacos/metabolismo , Nanocápsulas/química , Polifenóis/metabolismo , Estilbenos/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Portadores de Fármacos/farmacologia , Extrato de Sementes de Uva/química , Humanos , Inflamação/metabolismo , Microscopia de Força Atômica , Microscopia Óptica não Linear , Tamanho da Partícula , Polifenóis/farmacologia , Polissorbatos/química , Resveratrol , Estilbenos/farmacologia , Vitis
17.
Eur Phys J E Soft Matter ; 38(12): 140, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26701715

RESUMO

The atomic force microscope (AFM) evolved as a standard device in modern microbiological research. However, its capability as a sophisticated force sensor is not used to its full capacity. The AFM turns into a unique tool for quantitative adhesion research in bacteriology by using "bacterial probes". Thereby, bacterial probes are AFM cantilevers that provide a single bacterium or a cluster of bacteria as the contact-forming object. We present a step-by-step protocol for preparing bacterial probes, performing force spectroscopy experiments and processing force spectroscopy data. Additionally, we provide a general insight into the field of bacterial cell force spectroscopy.


Assuntos
Bactérias/citologia , Microscopia de Força Atômica/instrumentação , Aderência Bacteriana , Calibragem , Células Imobilizadas/citologia , Viabilidade Microbiana , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...