Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7974): 538-544, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587296

RESUMO

Molecules present a versatile platform for quantum information science1,2 and are candidates for sensing and computation applications3,4. Robust spin-optical interfaces are key to harnessing the quantum resources of materials5. To date, carbon-based candidates have been non-luminescent6,7, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical-triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies.

2.
Nano Lett ; 22(7): 2718-2724, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357842

RESUMO

Coherent coupling of defect spins with surrounding nuclei along with the endowment to read out the latter are basic requirements for an application in quantum technologies. We show that negatively charged boron vacancies (VB-) in hexagonal boron nitride (hBN) meet these prerequisites. We demonstrate Hahn-echo coherence of the VB- spin with a characteristic decay time Tcoh = 15 µs, close to the theoretically predicted limit of 18 µs for defects in hBN. Elongation of the coherence time up to 36 µs is demonstrated by means of the Carr-Purcell-Meiboom-Gill decoupling technique. Modulation of the Hahn-echo decay is shown to be induced by coherent coupling of the VB- spin with the three nearest 14N nuclei via a nuclear quadrupole interaction of 2.11 MHz. DFT calculation confirms that the electron-nuclear coupling is confined to the defective layer and stays almost unchanged with a transition from the bulk to the single layer.

3.
Mater Horiz ; 8(9): 2569-2575, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34870298

RESUMO

Triplet excited states in organic semiconductor materials and devices are notoriously difficult to detect and study with established spectroscopic methods. Yet, they are a crucial intermediate step in next-generation organic light emitting diodes (OLED) that employ thermally activated delayed fluorescence (TADF) to upconvert non-emissive triplets to emissive singlet states. In organic photovoltaic (OPV) devices, however, triplets are an efficiency-limiting exciton loss channel and are also involved in device degradation. Here, we introduce an innovative spin-sensitive method to study triplet states in both, optically excited organic semiconductor films, as well as in electrically driven devices. The method of transient optically detected magnetic resonance (trODMR) can be applied to all light-emitting materials whose luminescence depends on paramagnetic spin states. It is thus an ideal spectroscopic tool to distinguish different states involved and determine their corresponding time scales. We unravel the role of intermediate excited spin states in opto-electronic and photovoltaic materials and devices and reveal fundamental differences in electrically and optically induced triplet states.

4.
Sci Adv ; 7(47): eabj9961, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788086

RESUMO

Spin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale T2* of 30 ns. Crucially, we obtain the characteristic triplet exciplex spin-lattice relaxation time T1 in the range of 50 µs, which far exceeds the RISC time. We conclude that slow spin relaxation rather than RISC is an efficiency-limiting step for intermolecular donor:acceptor systems. Finding TADF emitters with faster spin relaxation will benefit this type of TADF OLEDs.

5.
Nat Commun ; 12(1): 4480, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294695

RESUMO

Spin defects in solid-state materials are strong candidate systems for quantum information technology and sensing applications. Here we explore in details the recently discovered negatively charged boron vacancies (VB-) in hexagonal boron nitride (hBN) and demonstrate their use as atomic scale sensors for temperature, magnetic fields and externally applied pressure. These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence of the VB-. Specifically, we find that the frequency shift in optically detected magnetic resonance measurements is not only sensitive to static magnetic fields, but also to temperature and pressure changes which we relate to crystal lattice parameters. We show that spin-rich hBN films are potentially applicable as intrinsic sensors in heterostructures made of functionalized 2D materials.

6.
Sci Adv ; 7(14)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33811078

RESUMO

Optically active spin defects are promising candidates for solid-state quantum information and sensing applications. To use these defects in quantum applications coherent manipulation of their spin state is required. Here, we realize coherent control of ensembles of boron vacancy centers in hexagonal boron nitride (hBN). Specifically, by applying pulsed spin resonance protocols, we measure a spin-lattice relaxation time of 18 microseconds and a spin coherence time of 2 microseconds at room temperature. The spin-lattice relaxation time increases by three orders of magnitude at cryogenic temperature. By applying a method to decouple the spin state from its inhomogeneous nuclear environment the optically detected magnetic resonance linewidth is substantially reduced to several tens of kilohertz. Our results are important for the employment of van der Waals materials for quantum technologies, specifically in the context of high resolution quantum sensing of two-dimensional heterostructures, nanoscale devices, and emerging atomically thin magnets.

7.
FASEB J ; 35(4): e21470, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710696

RESUMO

Intracellular adaptor proteins are indispensable for the transduction of receptor-derived signals, as they recruit and connect essential downstream effectors. The SLy/SASH1-adaptor family comprises three highly homologous proteins, all of them sharing conserved structural motifs. The initial characterization of the first member SLy1/SASH3 (SH3 protein expressed in lymphocytes 1) in 2001 was rapidly followed by identification of SLy2/HACS1 (hematopoietic adaptor containing SH3 and SAM domains 1) and SASH1/SLy3 (SAM and SH3 domain containing 1). Based on their pronounced sequence similarity, they were subsequently classified as one family of intracellular scaffold proteins. Despite their obvious homology, the three SLy/SASH1-members fundamentally differ with regard to their expression and function in intracellular signaling. On the contrary, growing evidence clearly demonstrates an important role of all three proteins in human health and disease. In this review, we systematically summarize what is known about the SLy/SASH1-adaptors in the field of molecular cell biology and immunology. To this end, we recapitulate current research about SLy1/SASH3, SLy2/HACS1, and SASH1/SLy3, with an emphasis on their similarities and differences.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Movimento Celular/fisiologia , Humanos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 254: 119606, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740753

RESUMO

Carbon chains with an odd number of C atoms are reactive intermediates with a high biradical character. Here we report a joint experimental and computational investigation of the dynamics of diphenylpropynylidene, C6H5-C3-C6H5, in dichloromethane and ethanol. The biradical is generated by ultraviolet light from 1,3-diphenyldiazopropyne. Electron paramagnetic resonance spectra are recorded to elucidate the spin multiplicity and geometry of the biradical. In both solvents a triplet ground state at 4 K is verified. Transient absorption spectra provide insight into the fate of the biradical. A study in deaerated dichloromethane permits us to follow the photophysics of diphenylpropynylidene and to extract time constants for its vibrational as well as electronic relaxation. In the presence of oxygen, a more complex photochemistry is observed that permits us to derive a model for the reaction of the biradical with O2. In ethanol, the spectra recorded in the presence and absence of O2 are very similar, which can be explained by the similarity of the chromophores of the reaction products.

9.
Nat Commun ; 12(1): 471, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473110

RESUMO

Stability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C60 via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C60 excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices.

10.
Nat Mater ; 19(5): 540-545, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32094496

RESUMO

Optically addressable spins in wide-bandgap semiconductors are a promising platform for exploring quantum phenomena. While colour centres in three-dimensional crystals such as diamond and silicon carbide were studied in detail, they were not observed experimentally in two-dimensional (2D) materials. Here, we report spin-dependent processes in the 2D material hexagonal boron nitride (hBN). We identify fluorescence lines associated with a particular defect, the negatively charged boron vacancy ([Formula: see text]), showing a triplet (S = 1) ground state and zero-field splitting of ~3.5 GHz. We establish that this centre exhibits optically detected magnetic resonance at room temperature and demonstrate its spin polarization under optical pumping, which leads to optically induced population inversion of the spin ground state-a prerequisite for coherent spin-manipulation schemes. Our results constitute a step forward in establishing 2D hBN as a prime platform for scalable quantum technologies, with potential for spin-based quantum information and sensing applications.

11.
Chem Sci ; 11(47): 12843-12853, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34094480

RESUMO

Covalent organic frameworks (COFs) define a versatile structural paradigm combining attractive properties such as crystallinity, porosity, and chemical and structural modularity which are valuable for various applications. For the incorporation of COFs into optoelectronic devices, efficient charge carrier transport and intrinsic conductivity are often essential. Here, we report the synthesis of two imine-linked two-dimensional COFs, WTA and WBDT, featuring a redox-active Wurster-type motif based on the twisted tetragonal N,N,N',N'-tetraphenyl-1,4-phenylenediamine node. By condensing this unit with either terephthalaldehyde (TA) or benzodithiophene dialdehyde (BDT), COFs featuring a dual-pore kagome-type structure were obtained as highly crystalline materials with large specific surface areas and mesoporosity. In addition, the experimentally determined high conduction band energies of both COFs render them suitable candidates for oxidative doping. The incorporation of a benzodithiophene linear building block into the COF allows for high intrinsic macroscopic conductivity. Both anisotropic and average isotropic electrical conductivities were determined with van der Pauw measurements using oriented films and pressed pellets, respectively. Furthermore, the impact of different dopants such as F4TCNQ, antimony pentachloride and iodine on the conductivities of the resulting doped COFs was studied. By using the strong organic acceptor F4TCNQ, a massive increase of the radical cation density (up to 0.5 radicals per unit cell) and long-term stable electrical conductivity as high as 3.67 S m-1 were achieved for the anisotropic transport in an oriented film, one of the highest for any doped COF to date. Interestingly, no significant differences between isotropic and anisotropic charge transport were found in films and pressed pellets. This work expands the list of possible building nodes for electrically conducting COFs from planar systems to twisted geometries. The achievement of high and stable electrical conductivity paves the way for possible applications of new COFs in organic (opto)electronics.

12.
Angew Chem Int Ed Engl ; 58(19): 6449-6454, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30779454

RESUMO

Herein, two new quadrupolar acceptor-π-donor-π-acceptor (A-π-D-π-A) chromophores have been prepared featuring a strongly electron-donating diborene core and strongly electron-accepting dimesitylboryl (BMes2 ) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BF Mes2 ) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry, and UV/Vis-NIR absorption and emission spectroscopy indicated that the compounds have extended conjugated π-systems spanning their B4 C8 cores. The combination of exceptionally potent π-donor (diborene) and π-acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm and very high extinction coefficients of ca. 120 000 m-1  cm-1 . Both molecules also display weak near-IR fluorescence with small Stokes shifts.

13.
BMC Cancer ; 18(1): 998, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340556

RESUMO

BACKGROUND: Even though the post-operative outcome varies greatly among patients with nodal positive colon cancer (UICC stage III), personalized prediction of systemic disease recurrence is currently insufficient. We investigated in a retrospective setting whether genetic and immunological biomarkers can be applied for stratification of distant metastasis occurrence risk. METHODS: Eighty four patients with complete resection (R0) of stage III colon cancer from two clinical centres were analysed for genetic biomarkers: microsatellite instability, oncogenic mutations in KRAS exon2 and BRAF exon15, expression of osteopontin and the metastasis-associated genes SASH1 and MACC1. Tumor-infiltrating CD3 and CD8 positive T-cells were quantified by immunocytochemistry. Results were correlated with outcome and response to 5-FU based adjuvant chemotherapy, using Cox's proportional hazard models and integrative two-step cluster analysis. RESULTS: Distant metastasis risk was significantly correlated with oncogenic KRAS mutations (p = 0.015), expression of SASH1 (p = 0.016), and the density of CD8-positive T-cells (p = 0.007) in Kaplan-Meier analysis. Upon multivariate Cox-regression analysis, KRAS mutation (p = 0.008) and density of CD8-positive TILs (p = 0.009) were retained as prognostic parameters for metachronous distant metastasis. Integrative two-step cluster analysis was used to combine all genetic markers, allowing stratification of patient subgroups. Post-operative distant metastasis risk ranged from 31% (low-risk) to 41% (intermediate), and 57% (high-risk) (p = 0.032). Increased expression of osteopontin (p = 0.019) and low density of CD8-positive T-cells (p = 0.043) were significantly associated with unfavourable response to 5-FU. CONCLUSIONS: Integrative biomarker analysis allows stratification of stage III colon cancer patients for the risk of metastatic disease recurrence and may indicate response to 5-FU. Thus, biomarker analysis might facilitate the use of adjuvant therapy for high risk patients.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/cirurgia , Feminino , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Estadiamento de Neoplasias/tendências , Estudos Retrospectivos
14.
Angew Chem Int Ed Engl ; 57(41): 13671-13675, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30048568

RESUMO

The investigation of the mechanisms of mechanochromic luminescence is of fundamental importance for the development of materials for photonic sensors, data storage, and luminescence switches. The structural origin of this phenomenon in phosphorescent molecular systems is rarely known and thus the formulation of structure-property relationships remains challenging. Changes in the M-M interactions have been proposed as the main mechanism with d10 coinage metal compounds. Herein, we describe a new mechanism-a mechanically induced reversible formation of a cation-anion exciplex based on Cu-F interactions-that leads to highly efficient mechanochromic phosphorescence and unusual large emission shifts from UV-blue to yellow for CuI complexes. The low-energy luminescence is thermo- and vaporesponsive, thus allowing the generation of white light as well as for recovering the original UV-blue emission.

15.
Sci Rep ; 6: 29158, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27380928

RESUMO

A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC71BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC71BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway.

16.
J Phys Chem B ; 119(24): 7407-16, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25599127

RESUMO

Understanding charge separation and charge transport is crucial for improving the efficiency of organic solar cells. Their active media are based on organic molecules and polymers, serving as both light-absorbing and transport layers. The charge-transfer (CT) states play an important role, being intermediate for free carrier generation and charge recombination. Here, we use light-induced electron paramagnetic resonance spectroscopy to study the CT dynamics in blends of the polymers P3HT, PCDTBT, and PTB7 with the fullerene derivative C60-PCBM. Time-resolved EPR measurements show strong spin-polarization patterns for all polymer-fullerene blends, confirming predominant generation of singlet CT states and partial orientation ordering near the donor-acceptor interface. These observations allow a comparison with charge separation processes in molecular donor-acceptor systems and in natural and artificial photosynthetic assemblies, and thus the elucidation of the initial steps of sequential CT in organic photovoltaic materials.


Assuntos
Fulerenos/química , Fotossíntese , Polímeros/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons/efeitos da radiação , Estrutura Molecular , Teoria Quântica
17.
Phys Chem Chem Phys ; 15(24): 9562-74, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23670645

RESUMO

The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Upon illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P(+), and negative, P(-), polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of (1)H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40-60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units for PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong delocalization of the positive polaron on the polymer donor is an important reason for the efficient charge separation in bulk heterojunction systems as it minimizes the wasteful process of charge recombination. The combination of advanced EPR spectroscopy and DFT is a powerful approach for investigation of light-induced charge dynamics in organic photovoltaic materials.


Assuntos
Fulerenos/química , Polímeros/química , Espectroscopia de Ressonância de Spin Eletrônica , Conversão Gênica , Compostos Organosselênicos/química , Energia Solar
19.
J Phys Chem B ; 115(46): 13513-8, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21972826

RESUMO

Understanding of degradation mechanisms in polymer:fullerene bulk-heterojunctions on the microscopic level aimed at improving their intrinsic stability is crucial for the breakthrough of organic photovoltaics. These materials are vulnerable to exposure to light and/or oxygen, hence they involve electronic excitations. To unambiguously probe the excited states of various multiplicities and their reactions with oxygen, we applied combined magneto-optical methods based on multifrequency (9 and 275 GHz) electron paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM = [6,6]-phenyl-C(61)-butyric acid methyl ester). We identified two distinct photochemical reaction routes, one being fully reversible and related to the formation of polymer:oxygen charge transfer complexes, the other one, irreversible, being related to the formation of singlet oxygen under participation of bound triplet excitons on the polymer chain. With respect to the blends, we discuss the protective effect of the methanofullerenes on the conjugated polymer bypassing the triplet exciton generation.

20.
Phys Chem Chem Phys ; 13(37): 16579-84, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21863147

RESUMO

From a fundamental and application point of view it is of importance to understand how charge carrier generation and transport in a conjugated polymer (CP):fullerene blend are affected by the blend morphology. In this work light-induced electron spin resonance (LESR) spectra and transient ESR response signals are recorded on non-annealed and annealed blend layers consisting of alkyl substituted thieno[3,2-b]thiophene copolymers (pATBT) and the soluble fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) at temperatures ranging from 10 to 180 K. Annealing of the blend sample leads to a reduction of the steady state concentration of light-induced PCBM anions within the blend at low temperatures (T = 10 K) and continuous illumination. This is explained on the basis of the reducing interfacial area of the blend composite on annealing, and the high activation energy for electron diffusion in PCBM blends leading to trapped electrons near the interface with the CP. As a consequence, these trapped electrons block consecutive electron transfer from an exciton on a CP to the PCBM domain, resulting in a relatively low concentration charge carriers in the annealed blend. Analysis of the transient ESR data allows us to conclude that in annealed samples diamagnetic bi-polaronic states on the CPs are generated at low temperature. The formation of these states is related to the generation and interaction of multiple positive polarons in the large crystalline polymer domains present in the annealed sample.


Assuntos
Fulerenos/química , Polímeros/química , Espectroscopia de Ressonância de Spin Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...