Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 77: 103891, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35220042

RESUMO

BACKGROUND: Gut microbiota-derived short-chain fatty-acid (SFCA) acetate protects mice against RSV A2 strain infection by increasing interferon-ß production and expression of interferon-stimulated genes (ISGs). However, the role of SFCA in RSV infection using strains isolated from patients is unknown. METHODS: We first used RSV clinical strains isolated from infants hospitalized with RSV bronchiolitis to investigate the effects of in vitro SCFA-acetate treatment of human pulmonary epithelial cells. We next examined whether SCFA-acetate treatment is beneficial in a mouse model of RSV infection using clinical isolates. We sought to investigate the relationship of gut microbiota and fecal acetate with disease severity among infants hospitalized with RSV bronchiolitis, and whether treating their respiratory epithelial cells with SCFA-acetate ex-vivo impacts viral load and ISG expression. We further treated epithelial cells from SARS-CoV-2 infected patients with SCFA-acetate. FINDINGS: In vitro pre-treatment of A549 cells with SCFA-acetate reduced RSV infection with clinical isolates and increased the expression of RIG-I and ISG15. Animals treated with SCFA-acetate intranasally recovered significantly faster, with reduction in the RSV clinical isolates viral load, and increased lung expression of IFNB1 and the RIG-I. Experiments in RIG-I knockout A549 cells demonstrated that the protection relies on RIG-I presence. Gut microbial profile was associated with bronchiolitis severity and with acetate in stool. Increased SCFA-acetate levels were associated with increasing oxygen saturation at admission, and shorter duration of fever. Ex-vivo treatment of patients' respiratory cells with SCFA-acetate reduced RSV load and increased expression of ISGs OAS1 and ISG15, and virus recognition receptors MAVS and RIG-I, but not IFNB1. These SCFA-acetate effects were not found on cells from SARS-CoV-2 infected patients. INTERPRETATION: SCFA-acetate reduces the severity of RSV infection and RSV viral load through modulation of RIG-I expression. FUNDING: FAPERGS (FAPERGS/MS/CNPq/SESRS no. 03/2017 - PPSUS 17/2551-0001380-8 and COVID-19 20/2551-0000258-6); CNPq 312504/2017-9; CAPES) - Finance Code 001.


Assuntos
Bronquiolite , COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Bronquiolite/tratamento farmacológico , Bronquiolite/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Lactente , Pulmão/metabolismo , Camundongos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/fisiologia , SARS-CoV-2
2.
Regul Toxicol Pharmacol ; 111: 104553, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31843592

RESUMO

New effective compounds to treat tuberculosis are urgently needed. IQG-607 is an orally active anti-tuberculosis drug candidate, with promising preliminary safety profile and anti-mycobacterial activity in both in vitro and in vivo models of tuberculosis infection. Here, we evaluated the mutagenic and genotoxic effects of IQG-607, and its interactions with CYP450 isoforms. Moreover, we describe for the first time a combination study of IQG-607 in Mycobacterium tuberculosis-infected mice. Importantly, IQG-607 had additive effects when combined with the first-line anti-tuberculosis drugs rifampin and pyrazinamide in mice. IQG-607 presented weak to moderate inhibitory potential against CYP450 isoforms 3A4, 1A2, 2C9, 2C19, 2D6, and 2E1. The Salmonella mutagenicity test revealed that IQG-607 induced base pair substitution mutations in the strains TA100 and TA1535. However, in the presence of human metabolic S9 fraction, no mutagenic effect was detected in any strain. Additionally, IQG-607 did not increase micronucleus frequencies in mice, at any dose tested, 25, 100, or 250 mg/kg. The favorable activity in combination with first-line drugs and mild to moderate toxic events described in this study suggest that IQG-607 represents a candidate for clinical development.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Ferrosos/efeitos adversos , Compostos Ferrosos/farmacologia , Isoniazida/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Aberrações Cromossômicas , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Compostos Ferrosos/administração & dosagem , Isoniazida/administração & dosagem , Isoniazida/efeitos adversos , Isoniazida/farmacologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Testes de Mutagenicidade , Mycobacterium tuberculosis/genética , Salmonella typhimurium/genética , Tuberculose/microbiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-30249478

RESUMO

Mucopolysaccharidosis type II (MPS II or Hunter syndrome) is an inborn error of metabolism characterized by the accumulation of glycosaminoglycans (GAG) in lysosomes. Enzyme replacement therapy (ERT) can reduce GAG storage, ameliorate symptoms, and slow disease progression. Oxidative damages may contribute to the MPS II pathophysiology, and treatment with ERT might reduce the effects of oxidative stress. We evaluated levels of DNA damage (including oxidative damage) and chromosome damage in leukocytes of long-term-treated MPS II patients, by applying the buccal micronucleus cytome assay. We observed that, despite long-term ERT, MPS II patients had higher levels of DNA damage and higher frequencies of micronuclei and nuclear buds than did control. These genetic damages are presumably due to oxidation: we also observed increased levels of oxidized guanine species in MPS II patients. Therapy adjuvant to ERT should be considered, in order to decrease oxidative damage and cytogenetic alterations.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Terapia de Reposição de Enzimas , Glicoproteínas/administração & dosagem , Leucócitos/patologia , Mucopolissacaridose II/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Glicoproteínas/deficiência , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/enzimologia , Masculino , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/enzimologia , Mucopolissacaridose II/patologia , Oxirredução , Estresse Oxidativo , Resultado do Tratamento , Adulto Jovem
4.
PLoS One ; 13(8): e0202568, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114296

RESUMO

New effective compounds for tuberculosis treatment are needed. This study evaluated the effects of a series of quinoxaline-derived chalcones against laboratorial strains and clinical isolates of M. tuberculosis. Six molecules, namely N5, N9, N10, N15, N16, and N23 inhibited the growth of the M. tuberculosis H37Rv laboratorial strain. The three compounds (N9, N15 and N23) with the lowest MIC values were further tested against clinical isolates and laboratory strains with mutations in katG or inhA genes. From these data, N9 was selected as the lead compound for further investigation. Importantly, this chalcone displayed a synergistic effect when combined with moxifloxacin. Noteworthy, the anti-tubercular effects of N9 did not rely on inhibition of mycolic acids synthesis, circumventing important mechanisms of resistance. Interactions with cytochrome P450 isoforms and toxic effects were assessed in silico and in vitro. The chalcone N9 was not predicted to elicit any mutagenic, genotoxic, irritant, or reproductive effects, according to in silico analysis. Additionally, N9 did not cause mutagenicity or genotoxicity, as revealed by Salmonella/microsome and alkaline comet assays, respectively. Moreover, N9 did not inhibit the cytochrome P450 isoforms CYP3A4/5, CYP2C9, and CYP2C19. N9 can be considered a potential lead molecule for development of a new anti-tubercular therapeutic agent.


Assuntos
Antituberculosos/farmacologia , Chalconas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Proteínas de Bactérias/genética , Catalase/genética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/genética , Sistema Enzimático do Citocromo P-450/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/patogenicidade , Ácidos Micólicos/antagonistas & inibidores , Oxirredutases/genética , Quinoxalinas/farmacologia , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/patologia
5.
Eur J Pharm Sci ; 111: 393-398, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037995

RESUMO

IQG-607 is an analog of isoniazid with anti-tuberculosis activity. This work describes the development and validation of an HPLC method to quantify pentacyano(isoniazid)ferrate(II) compound (IQG-607) and the pharmacokinetic studies of this compound in mice. The method showed linearity in the 0.5-50µg/mL concentration range (r=0.9992). Intra- and inter-day precision was <5%, and the recovery ranged from 92.07 to 107.68%. IQG-607 was stable in plasma for at least 30days at -80°C and, after plasma processing, for 4h in the auto-sampler maintained on ice (recovery >85%). The applicability of the method for pharmacokinetic studies was determined after intravenous (i.v.) and oral (fasted and fed conditions) administration to mice. IQG-607 levels in plasma were quantified at time points for up to 2.5h. A short half-life (t1/2) (1.14h), a high clearance (CL) (3.89L/h/kg), a moderate volume of distribution at steady state (Vdss) of 1.22L/kg, were observed after i.v. (50mg/kg) administration. Similar results were obtained for oral administration (250mg/kg) under fasted and fed conditions. The oral bioavailability (F), approximately 4%, was not altered by feeding. Plasma protein binding was 88.87±0.9%. The results described here provide novel insights into a pivotal criterion to warrant further efforts to be pursued towards attempts to translate this chemical compound into a chemotherapeutic agent to treat TB.


Assuntos
Antituberculosos/farmacocinética , Compostos Ferrosos/farmacocinética , Isoniazida/análogos & derivados , Animais , Antituberculosos/sangue , Área Sob a Curva , Estabilidade de Medicamentos , Compostos Ferrosos/sangue , Meia-Vida , Isoniazida/sangue , Isoniazida/farmacocinética , Camundongos
6.
PLoS One ; 12(12): e0190294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29281707

RESUMO

M. tuberculosis and parasites of the genus Leishmania present the type II fatty acid biosynthesis system (FASII). The pentacyano(isoniazid)ferrate(II) compound, named IQG-607, inhibits the enzyme 2-trans-enoyl-ACP(CoA) reductase from M. tuberculosis, a key component in the FASII system. Here, we aimed to evaluate the inhibitory activity of IQG-607 against promastigote and amastigote forms of Leishmania (Viannia) braziliensis isolated from patients with different clinical forms of L. braziliensis infection, including cutaneous, mucosal and disseminated leishmaniasis. Importantly, IQG-607 inhibited the proliferation of three different isolates of L. braziliensis promastigotes associated with cutaneous, mucosal and disseminated leishmaniasis. The IC50 values for IQG-607 ranged from 32 to 75 µM, for these forms. Additionally, IQG-607 treatment decreased the proliferation of intracellular amastigotes in infected macrophages, after an analysis of the percentage of infected cells and the number of intracellular parasites/100 cells. IQG-607 reduced from 58% to 98% the proliferation of L. braziliensis from cutaneous, mucosal and disseminated strains. Moreover, IQG-607 was also evaluated regarding its potential toxic profile, by using different cell lines. Cell viability of the lineages Vero, HaCat and HepG2 was significantly reduced after incubation with concentrations of IQG-607 higher than 2 mM. Importantly, IQG-607, in a concentration of 1 mM, did not induce DNA damage in HepG2 cells, when compared to the untreated control group. Future studies will confirm the mechanism of action of IQG-607 against L. braziliensis.


Assuntos
Compostos Ferrosos/farmacologia , Isoniazida/análogos & derivados , Leishmania braziliensis/efeitos dos fármacos , Animais , Isoniazida/farmacologia , Leishmania braziliensis/crescimento & desenvolvimento
7.
Psychopharmacology (Berl) ; 232(19): 3623-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26231496

RESUMO

RATIONALE: Alcohol addiction causes severe problems, and its deprivation may potentiate symptoms such as anxiety. Furthermore, ethanol is a neurotoxic agent that induces degeneration and the consequences underlying alcohol-mediated brain damage remain unclear. OBJECTIVES: This study assessed the behavioral changes during acute ethanol withdrawal periods and determined the levels of DNA damage and reactive oxygen species (ROS) in multiple brain areas. METHODS: Male Wistar rats were subjected to an oral ethanol self-administration procedure with a forced diet where they were offered 8% (v/v) ethanol solution for 21 days followed by five repeated 24-h cycles alternating between ethanol withdrawal and re-exposure. Control animals received an isocaloric control diet without ethanol. Behavioral changes were analyzed on ethanol withdrawal days in the open-field (OF) and elevated plus-maze (EPM) tests within the first 6 h of ethanol deprivation. The pre-frontal cortex, hypothalamus, striatum, hippocampus, and cerebellum were dissected for alkaline and neutral comet assays and for dichlorofluorescein ROS testing. RESULTS: The repeated intermittent ethanol access enhanced solution intake and alcohol-seeking behavior. Decreased exploratory activity was observed in the OF test, and the animals stretched less in the EPM test. DNA single-strand breaks and ROS production were significantly higher in all structures evaluated in the ethanol-treated rats compared with controls. CONCLUSIONS: The animal model of repeated intermittent ethanol access induced behavioral changes in rats, and this ethanol exposure model induced an increase in DNA single-strand breaks and ROS production in all brain areas. Our results suggest that these brain damages may influence future behaviors.


Assuntos
Alcoolismo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dano ao DNA/efeitos dos fármacos , Etanol/administração & dosagem , Síndrome de Abstinência a Substâncias/metabolismo , Fatores Etários , Alcoolismo/complicações , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Dano ao DNA/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Autoadministração , Síndrome de Abstinência a Substâncias/etiologia
8.
Neuropharmacology ; 86: 57-66, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24929111

RESUMO

This study investigated whether the spinal or systemic treatment with the lipid resolution mediators resolvin D1 (RvD1), aspirin-triggered resolvin D1 (AT-RvD1) and resolvin D2 (RvD2) might interfere with behavioral and neurochemical changes in the mouse fibromyalgia-like model induced by reserpine. Acute administration of AT-RvD1 and RvD2 produced a significant inhibition of mechanical allodynia and thermal sensitization in reserpine-treated mice, whereas RvD1 was devoid of effects. A similar antinociceptive effect was obtained by acutely treating animals with the reference drug pregabalin. Noteworthy, the repeated administration of AT-RvD1 and RvD2 also prevented the depressive-like behavior in reserpine-treated animals, according to assessment of immobility time, although the chronic administration of pregabalin failed to affect this parameter. The induction of fibromyalgia by reserpine triggered a marked decrease of dopamine and serotonin (5-HT) levels, as examined in total brain, spinal cord, cortex and thalamus. Reserpine also elicited a reduction of glutamate levels in total brain, and a significant increase in the spinal cord and thalamus. Chronic treatment with RvD2 prevented 5-HT reduction in total brain, and reversed the glutamate increases in total brain and spinal cord. Otherwise, AT-RvD1 led to a recovery of dopamine levels in cortex, and 5-HT in thalamus, whilst it diminished brain glutamate contents. Concerning pregabalin, this drug prevented dopamine reduction in total brain, and inhibited glutamate increase in brain and spinal cord of reserpine-treated animals. Our data provide novel evidence, showing the ability of D-series resolvins AT-RvD1, and mainly RvD2, in reducing painful and depressive symptoms allied to fibromyalgia in mice.


Assuntos
Analgésicos/farmacologia , Antidepressivos/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Fibromialgia/tratamento farmacológico , Fibromialgia/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Modelos Animais de Doenças , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Temperatura Alta , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/fisiopatologia , Pregabalina , Serotonina/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Tato , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/farmacologia
9.
Exp Dermatol ; 22(3): 184-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23489421

RESUMO

Irritant contact dermatitis (ICD) is an inflammatory reaction caused by chemical toxicity on the skin. The P2X7 receptor (P2X7R) is a key mediator of cytokine release, which recruits immune cells to sites of inflammation. We investigated the role of P2X7R in croton oil (CrO)-induced ICD using in vitro and in vivo approaches. ICD was induced in vivo by CrO application on the mouse ear and in vitro by incubation of murine macrophages and dendritic cells (DCs) with CrO and ATP. Infiltrating cells were identified by flow cytometry, histology and myeloperoxidase (MPO) determination. Effects of the ATP scavenger apyrase were assessed to investigate further the role of P2X7R in ICD. Animals were also treated with N-1330, a caspase-1 inhibitor, or with clodronate, which induces macrophage apoptosis. CrO application induced severe inflammatory Gr1(+) cell infiltration and increased MPO levels in the mouse ear. Selective P2X7R antagonism with A438079 or genetic P2X7R deletion reduced the neutrophil infiltration. Clodronate administration significantly reduced Gr1(+) cell infiltration and local IL-1ß levels. In vitro experiments confirmed that A438079 or apyrase treatment prevented the increase in IL-1ß that was evoked by macrophage and DC incubation with CrO and ATP. These data support a key role for P2X7 in ICD-mediated inflammation via modulation of inflammatory cells. It is tempting to suggest that P2X7R inhibition might be an alternative ICD treatment.


Assuntos
Movimento Celular/fisiologia , Dermatite de Contato/patologia , Dermatite de Contato/fisiopatologia , Neutrófilos/patologia , Receptores Purinérgicos P2X7/fisiologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Ácido Clodrônico/farmacologia , Óleo de Cróton/efeitos adversos , Dermatite de Contato/metabolismo , Modelos Animais de Doenças , Técnicas In Vitro , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/genética , Tetrazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...