Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 11(9): 5614-5627, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34055456

RESUMO

Developing better three-way catalysts with improved low-temperature performance is essential for cold start emission control. Density functional theory in combination with microkinetics simulations is used to predict reactivity of CO/NO/H2 mixtures on a small Pd cluster on CeO2(111). At low temperatures, N2O formation occurs via a N2O2 dimer over metallic Pd3. Part of the N2O intermediate product re-oxidizes Pd, limiting NO conversion and requiring rich conditions to obtain high N2 selectivity. High N2 selectivity at elevated temperatures is due to N2O decomposition on oxygen vacancies. Doping CeO2 by Fe is predicted to lead to more oxygen vacancies and a higher N2 selectivity, which is validated by the lower onset of N2 formation for a Pd catalyst supported on Fe-doped CeO2 prepared by flame spray pyrolysis. Activating ceria surface oxygen by transition metal doping is a promising strategy to improve the performance of three-way catalysts.

2.
ACS Catal ; 7(10): 6887-6891, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29034121

RESUMO

Ceria-supported Pd is a promising heterogeneous catalyst for CO oxidation relevant to environmental cleanup reactions. Pd loaded onto a nanorod form of ceria exposing predominantly (111) facets is already active at 50 °C. Here we report a combination of CO-FTIR spectroscopy and theoretical calculations that allows assigning different forms of Pd on the CeO2(111) surface during reaction conditions. Single Pd atoms stabilized in the form of PdO and PdO2 in a CO/O2 atmosphere participate in a catalytic cycle involving very low activation barriers for CO oxidation. The presence of single Pd atoms on the Pd/CeO2-nanorod, corroborated by aberration-corrected TEM and CO-FTIR spectroscopy, is considered pivotal to its high CO oxidation activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...