Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(23): eadn6056, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838149

RESUMO

Extensive ice coverage largely prevents investigations of Antarctica's unglaciated past. Knowledge about environmental and tectonic development before large-scale glaciation, however, is important for understanding the transition into the modern icehouse world. We report geochronological and sedimentological data from a drill core from the Amundsen Sea shelf, providing insights into tectonic and topographic conditions during the Eocene (~44 to 34 million years ago), shortly before major ice sheet buildup. Our findings reveal the Eocene as a transition period from >40 million years of relative tectonic quiescence toward reactivation of the West Antarctic Rift System, coinciding with incipient volcanism, rise of the Transantarctic Mountains, and renewed sedimentation under temperate climate conditions. The recovered sediments were deposited in a coastal-estuarine swamp environment at the outlet of a >1500-km-long transcontinental river system, draining from the rising Transantarctic Mountains into the Amundsen Sea. Much of West Antarctica hence lied above sea level, but low topographic relief combined with low elevation inhibited widespread ice sheet formation.

2.
Nature ; 580(7801): 81-86, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238944

RESUMO

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1-5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf-the southernmost Cretaceous record reported so far-and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82° S during the Turonian-Santonian age (92 to 83 million years ago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120-1,680 parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/história , Clima , Floresta Úmida , Temperatura , Regiões Antárticas , Fósseis , Sedimentos Geológicos/química , História Antiga , Modelos Teóricos , Nova Zelândia , Pólen , Esporos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...