Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Ann Clin Transl Neurol ; 11(4): 883-898, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263760

RESUMO

OBJECTIVE: This study aims to elucidate the long-term benefit of newborn screening (NBS) for individuals with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiency, inherited metabolic diseases included in NBS programs worldwide. METHODS: German national multicenter study of individuals with confirmed LCHAD/MTP deficiency identified by NBS between 1999 and 2020 or selective metabolic screening. Analyses focused on NBS results, confirmatory diagnostics, and long-term clinical outcomes. RESULTS: Sixty-seven individuals with LCHAD/MTP deficiency were included in the study, thereof 54 identified by NBS. All screened individuals with LCHAD deficiency survived, but four with MTP deficiency (14.8%) died during the study period. Despite NBS and early treatment neonatal decompensations (28%), symptomatic disease course (94%), later metabolic decompensations (80%), cardiomyopathy (28%), myopathy (82%), hepatopathy (32%), retinopathy (17%), and/or neuropathy (22%) occurred. Hospitalization rates were high (up to a mean of 2.4 times/year). Disease courses in screened individuals with LCHAD and MTP deficiency were similar except for neuropathy, occurring earlier in individuals with MTP deficiency (median 3.9 vs. 11.4 years; p = 0.0447). Achievement of dietary goals decreased with age, from 75% in the first year of life to 12% at age 10, and consensus group recommendations on dietary management were often not achieved. INTERPRETATION: While NBS and early treatment result in improved (neonatal) survival, they cannot reliably prevent long-term morbidity in screened individuals with LCHAD/MTP deficiency, highlighting the urgent need of better therapeutic strategies and the development of disease course-altering treatment.


Assuntos
Cardiomiopatias , Erros Inatos do Metabolismo Lipídico , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional , Doenças do Sistema Nervoso , Rabdomiólise , Humanos , Recém-Nascido , Ácidos Graxos/metabolismo , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/terapia , Erros Inatos do Metabolismo Lipídico/metabolismo , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/metabolismo , Proteína Mitocondrial Trifuncional/metabolismo , Proteína Mitocondrial Trifuncional/deficiência , Lactente , Pré-Escolar , Criança
2.
JIMD Rep ; 65(1): 25-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186849

RESUMO

Long-chain fatty acid oxidation disorders (lcFAODs) are associated with a high disease burden due to both the risk of metabolic decompensation as well as chronic, partly irreversible complications in some. Little research has been performed on the impact of these disorders on the daily life of parents and caregivers. We performed a web-based questionnaire study among parents/caregivers of patients affected with lcFAODs. The questionnaire focused on challenges at different ages of the child, on disease management issues, schooling, family and social life as well as the parental job situation, and their overall attitude toward the disease and the future life of their child. Data were collected from parents/caregivers of 63 patients (87 respondents, 63% mothers, 36% fathers) with lcFAODs (median age of patients 8.0 years, range 0-25 years, long-chain 3-hydrocyacyl-CoA dehydrogenase deficiency 40%, mitochondrial trifunctional protein deficiency 14%, very long-chain acyl-CoA dehydrogenase deficiency 41%, carnitine palmitoyltransferase 2 deficiency 5%). The overall disease burden of parents was considered highest during infancy and decreased with increasing age of their child. More than one third of parents were afraid that their child's disease might have an impact on his/her career choice and adult life. Negative effects of the child's disease on the job situation and career development were more commonly reported by mothers compared to fathers. Although the majority of parents considered their child's metabolic disorder a severe disease, most parents had a positive attitude toward their child's disease and seemed to cope well with their situation.

3.
Clin Biochem ; 123: 110703, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097032

RESUMO

Chronic kidney disease (CKD) affects over 0.5 billion people worldwide across their lifetimes. Despite a growingly ageing world population, an increase in all-age prevalence of kidney disease persists. Adult-onset forms of kidney disease often result from lifestyle-modifiable metabolic illnesses such as type 2 diabetes. Pediatric and adolescent forms of renal disease are primarily caused by morphological abnormalities of the kidney, as well as immunological, infectious and inherited metabolic disorders. Alterations in energy metabolism are observed in CKD of varying causes, albeit the molecular mechanisms underlying pathology are unclear. A systematic indexing of metabolites identified in plasma and urine of patients with kidney disease alongside disease enrichment analysis uncovered inborn errors of metabolism as a framework that links features of adult and pediatric kidney disease. The relationship of genetics and metabolism in kidney disease could be classified into three distinct landscapes: (i) Normal genotypes that develop renal damage because of lifestyle and / or comorbidities; (ii) Heterozygous genetic variants and polymorphisms that result in unique metabotypes that may predispose to the development of kidney disease via synergistic heterozygosity, and (iii) Homozygous genetic variants that cause renal impairment by perturbing metabolism, as found in children with monogenic inborn errors of metabolism. Interest in the identification of early biomarkers of onset and progression of CKD has grown steadily in the last years, though it has not translated into clinical routine yet. This systematic review indexes findings of differential concentration of metabolites and energy pathway dysregulation in kidney disease and appraises their potential use as biomarkers.


Assuntos
Diabetes Mellitus Tipo 2 , Erros Inatos do Metabolismo , Insuficiência Renal Crônica , Adulto , Adolescente , Humanos , Criança , Rim/metabolismo , Insuficiência Renal Crônica/genética , Metabolômica , Biomarcadores , Erros Inatos do Metabolismo/genética
4.
Nutrients ; 15(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37960342

RESUMO

Defects in mitochondrial fatty acid ß-oxidation (FAO) impair metabolic flexibility, which is an essential process for energy homeostasis. Very-long-chain acyl-CoA dehydrogenase (VLCADD; OMIM 609575) deficiency is the most common long-chain mitochondrial FAO disorder presenting with hypoglycemia as a common clinical manifestation. To prevent hypoglycemia, triheptanoin-a triglyceride composed of three heptanoates (C7) esterified with a glycerol backbone-can be used as a dietary treatment, since it is metabolized into precursors for gluconeogenesis. However, studies investigating the effect of triheptanoin on glucose homeostasis are limited. To understand the role of gluconeogenesis in the pathophysiology of long-chain mitochondrial FAO defects, we injected VLCAD-deficient (VLCAD-/-) mice with 13C3-glycerol in the presence and absence of heptanoate (C7). The incorporation of 13C3-glycerol into blood glucose was higher in VLCAD-/- mice than in WT mice, whereas the difference disappeared in the presence of C7. The result correlates with 13C enrichment of liver metabolites in VLCAD-/- mice. In contrast, the C7 bolus significantly decreased the 13C enrichment. These data suggest that the increased contribution of gluconeogenesis to the overall glucose production in VLCAD-/- mice increases the need for gluconeogenesis substrate, thereby avoiding hypoglycemia. Heptanoate is a suitable substrate to induce glucose production in mitochondrial FAO defect.


Assuntos
Hipoglicemia , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Camundongos , Animais , Heptanoatos , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Glicerol , Ácidos Graxos/metabolismo , Glucose/uso terapêutico , Homeostase
5.
J Inherit Metab Dis ; 46(5): 759-760, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37565584
6.
J Inherit Metab Dis ; 46(5): 778-795, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37403863

RESUMO

Population newborn screening (NBS) for phenylketonuria began in the United States in 1963. In the 1990s electrospray ionization mass spectrometry permitted an array of pathognomonic metabolites to be identified simultaneously, enabling up to 60 disorders to be recognized with a single test. In response, differing approaches to the assessment of the harms and benefits of screening have resulted in variable screening panels worldwide. Thirty years on and another screening revolution has emerged with the potential for first line genomic testing extending the range of screening conditions recognized after birth to many hundreds. At the annual SSIEM conference in 2022 in Freiburg, Germany, an interactive plenary discussion on genomic screening strategies and their challenges and opportunities was conducted. The Genomics England Research project proposes the use of Whole Genome Sequencing to offer extended NBS to 100 000 babies for defined conditions with a clear benefit for the child. The European Organization for Rare Diseases seeks to include "actionable" conditions considering also other types of benefits. Hopkins Van Mil, a private UK research institute, determined the views of citizens and revealed as a precondition that families are provided with adequate information, qualified support, and that autonomy and data are protected. From an ethical standpoint, the benefits ascribed to screening and early treatment need to be considered in relation to asymptomatic, phenotypically mild or late-onset presentations, where presymptomatic treatment may not be required. The different perspectives and arguments demonstrate the unique burden of responsibility on those proposing new and far-reaching developments in NBS programs and the need to carefully consider both harms and benefits.


Assuntos
Triagem Neonatal , Fenilcetonúrias , Recém-Nascido , Criança , Humanos , Estados Unidos , Triagem Neonatal/métodos , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/genética , Genômica , Sequenciamento Completo do Genoma , Doenças Raras
7.
Genes (Basel) ; 14(7)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37510312

RESUMO

Riboflavin transporter 1 (RFVT1) deficiency is an ultrarare metabolic disorder due to autosomal dominant pathogenic variants in SLC52A1. The RFVT1 protein is mainly expressed in the placenta and intestine. To our knowledge, only five cases of RFVT1 deficiency from three families have been reported so far. While newborns and infants with SLC52A1 variants mainly showed a multiple acyl-CoA dehydrogenase deficiency-like presentation, individuals identified in adulthood were usually clinically asymptomatic. We report two patients with novel heterozygous SLC52A1 variants. Patient 1 presented at the age of 62 with mild hyperammonemia following gastroenteritis. An acylcarnitine analysis in dried blood spots was abnormal with a multiple acyl-CoA dehydrogenase deficiency-like pattern, and genetic analysis confirmed a heterozygous SLC52A1 variant, c.68C > A, p. Ser23Tyr. Patient 2 presented with recurrent seizures and hypsarrhythmia at the age of 7 months. Metabolic investigations yielded unremarkable results. However, whole exome sequencing revealed a heterozygous start loss variant, c.3G > A, p. Met1Ile in SLC52A1. These two cases expand the clinical spectrum of riboflavin transporter 1 deficiency and demonstrate that symptomatic presentation in adulthood is possible.


Assuntos
Proteínas de Membrana Transportadoras , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Heterozigoto , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Receptores Acoplados a Proteínas G/genética , Riboflavina/metabolismo , Proteínas de Membrana Transportadoras/genética
8.
J Inherit Metab Dis ; 46(6): 1063-1077, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37429829

RESUMO

Newborn screening (NBS) allows early identification of individuals with rare disease, such as isovaleric aciduria (IVA). Reliable early prediction of disease severity of positively screened individuals with IVA is needed to guide therapeutic decision, prevent life-threatening neonatal disease manifestation in classic IVA and over-medicalization in attenuated IVA that may remain asymptomatic. We analyzed 84 individuals (median age at last study visit 8.5 years) with confirmed IVA identified by NBS between 1998 and 2018 who participated in the national, observational, multicenter study. Screening results, additional metabolic parameters, genotypes, and clinical phenotypic data were included. Individuals with metabolic decompensation showed a higher median isovalerylcarnitine (C5) concentration in the first NBS sample (10.6 vs. 2.7 µmol/L; p < 0.0001) and initial urinary isovalerylglycine concentration (1750 vs. 180 mmol/mol creatinine; p = 0.0003) than those who remained asymptomatic. C5 was in trend inversely correlated with full IQ (R = -0.255; slope = -0.869; p = 0.0870) and was lower for the "attenuated" variants compared to classic genotypes [median (IQR; range): 2.6 µmol/L (2.1-4.0; 0.7-6.4) versus 10.3 µmol/L (7.4-13.1; 4.3-21.7); N = 73]. In-silico prediction scores (M-CAP, MetaSVM, and MetaLR) correlated highly with isovalerylglycine and ratios of C5 to free carnitine and acetylcarnitine, but not sufficiently with clinical endpoints. The results of the first NBS sample and biochemical confirmatory testing are reliable early predictors of the clinical course of IVA, facilitating case definition (attenuated versus classic IVA). Prediction of attenuated IVA is supported by the genotype. On this basis, a reasonable algorithm has been established for neonates with a positive NBS result for IVA, with the aim of providing the necessary treatment immediately, but whenever possible, adjusting the treatment to the individual severity of the disease.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Criança , Humanos , Recém-Nascido , Acetilcarnitina , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Genótipo , Glicina/genética , Triagem Neonatal/métodos , Gravidade do Paciente
9.
Sci Rep ; 13(1): 7677, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169781

RESUMO

Methylmalonic aciduria (MMA-uria) is caused by deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT). MUT deficiency hampers energy generation from specific amino acids, odd-chain fatty acids and cholesterol. Chronic kidney disease (CKD) is a well-known long-term complication. We exposed human renal epithelial cells from healthy controls and MMA-uria patients to different culture conditions (normal treatment (NT), high protein (HP) and isoleucine/valine (I/V)) to test the effect of metabolic stressors on renal mitochondrial energy metabolism. Creatinine levels were increased and antioxidant stress defense was severely comprised in MMA-uria cells. Alterations in mitochondrial homeostasis were observed. Changes in tricarboxylic acid cycle metabolites and impaired energy generation from fatty acid oxidation were detected. Methylcitrate as potentially toxic, disease-specific metabolite was increased by HP and I/V load. Mitophagy was disabled in MMA-uria cells, while autophagy was highly active particularly under HP and I/V conditions. Mitochondrial dynamics were shifted towards fission. Sirtuin1, a stress-resistance protein, was down-regulated by HP and I/V exposure in MMA-uria cells. Taken together, both interventions aggravated metabolic fingerprints observed in MMA-uria cells at baseline. The results point to protein toxicity in MMA-uria and lead to a better understanding, how the accumulating, potentially toxic organic acids might trigger CKD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Insuficiência Renal Crônica , Humanos , Homeostase , Metilmalonil-CoA Mutase/metabolismo , Células Epiteliais/metabolismo
10.
Mol Genet Metab ; 138(3): 107509, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791482

RESUMO

Phenylketonuria (PKU, MIM #261600) is one of the most common inborn errors of metabolism (IEM) with an incidence of 1:10000 in the European population. PKU is caused by autosomal recessive mutations in phenylalanine hydroxylase (PAH) and manifests with elevation of phenylalanine (Phe) in plasma and urine. Untreated PKU manifests with intellectual disability including seizures, microcephaly and behavioral abnormalities. Early treatment and good compliance result in a normal intellectual outcome in many but not in all patients. This study examined plasma metabolites in patients with PKU (n = 27), hyperphenylalaninemia (HPA, n = 1) and healthy controls (n = 32) by LC- MS/MS. We hypothesized that PKU patients would exhibit a distinct "submetabolome" compared to that of healthy controls. We further hypothesized that the submetabolome of PKU patients with good metabolic control would resemble that of healthy controls. Results from this study show: (i) Distinct clustering of healthy controls and PKU patients based on polar metabolite profiling, (ii) Increased and decreased concentrations of metabolites within and afar from the Phe pathway in treated patients, and (iii) A specific PKU-submetabolome independently of metabolic control assessed by Phe in plasma. We examined the relationship between PKU metabolic control and extended metabolite profiles in plasma. The PKU submetabolome characterized in this study represents the combined effects of dietary adherence, adjustments in metabolic pathways to compensate for defective Phe processing, as well as metabolic derangements that could not be corrected with dietary management even in patients classified as having good metabolic control. New therapeutic targets may be uncovered to approximate the PKU submetabolome to that of healthy controls and prevent long-term organ damage.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Humanos , Hotspot de Doença , Espectrometria de Massas em Tandem , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Fenilalanina , Análise por Conglomerados
11.
JIMD Rep ; 63(6): 521-523, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36341170

RESUMO

Glycerol phenylbutyrate (GPB) is an ammonia scavenger drug commonly used in the therapy of patients with urea cycle defects. Reported side effects include body odor, abdominal pain, nausea, burning sensation in mouth, vomiting, and heartburn. We report on a 3-year-old late diagnosed female patient with ornithine transcarbamylase deficiency that experienced severe loss of appetite under treatment with GBP. Due to catabolism (calory intake about 400 kcal/day) and the associated risk of metabolic decompensation, GBP treatment was discontinued. Her appetite and eating behavior normalized within 1 day after discontinuation of GBP and switch to sodium benzoate. Our case demonstrates that GBP can cause severe loss of appetite that may put patients at risk of metabolic decompensation and require discontinuation of therapy.

12.
Nat Commun ; 13(1): 5371, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100608

RESUMO

The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics. Furthermore, CD37-negative lymphomas selectively deplete palmitate from serum in mouse studies. Mechanistically, CD37 inhibits the FA transporter FATP1 through molecular interaction. Consequently, deletion of CD37 induces uptake and processing of exogenous palmitate into energy and essential building blocks for proliferation, and inhibition of FATP1 reverses this phenotype. Large lipid deposits and intracellular lipid droplets are observed in CD37-negative lymphoma tissues of patients. Moreover, inhibition of carnitine palmitoyl transferase 1 A significantly compromises viability and proliferation of CD37-deficient lymphomas. Collectively, our results identify CD37 as a direct gatekeeper of the FA metabolic switch in aggressive B-cell lymphoma.


Assuntos
Antígenos de Neoplasias , Linfoma de Células B , Animais , Antígenos de Neoplasias/metabolismo , Ácidos Graxos/metabolismo , Linfoma de Células B/genética , Camundongos , Palmitatos , Tetraspaninas/genética , Tetraspaninas/metabolismo
13.
iScience ; 25(9): 104981, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36105582

RESUMO

Nutritional deficiency and genetic errors that impair the transport, absorption, and utilization of vitamin B12 (B12) lead to hematological and neurological manifestations. The cblC disease (cobalamin complementation type C) is an autosomal recessive disorder caused by mutations and epi-mutations in the MMACHC gene and the most common inborn error of B12 metabolism. Pathogenic mutations in MMACHC disrupt enzymatic processing of B12, an indispensable step before micronutrient utilization by the two B12-dependent enzymes methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). As a result, patients with cblC disease exhibit plasma elevation of homocysteine (Hcy, substrate of MS) and methylmalonic acid (MMA, degradation product of methylmalonyl-CoA, substrate of MUT). The cblC disorder manifests early in childhood or in late adulthood with heterogeneous multi-organ involvement. This review covers current knowledge on the cblC disease, structure-function relationships of the MMACHC protein, the genotypic and phenotypic spectra in humans, experimental disease models, and promising therapies.

14.
JIMD Rep ; 63(4): 303-308, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35822091

RESUMO

Glycogen storage disease type Ib (GSD Ib) is caused by biallelic variants in SLC37A4. GSD Ib is characterized by hepatomegaly, recurrent hypoglycemia, neutropenia, and neutrophil dysfunction. Only seven pregnancies in four women with GSD Ib have been reported so far. We report on two further successful pregnancies in two patients with GSD Ib. One of these pregnancies was managed with empagliflozin, an SGLT2 inhibitor, repurposed for the treatment of neutropenia in GSD Ib. Both pregnancies were unremarkable and resulted in healthy offspring. Gestational care and pre- and perinatal management in GSD Ib are challenging and require close interdisciplinary metabolic and obstetric monitoring. In our patient, the use of empagliflozin during pregnancy was successful in the prevention of neutropenic symptoms and infections and enabled good wound healing after Cesarean section, while no adverse effects were observed.

15.
Nat Commun ; 13(1): 3128, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668073

RESUMO

The rate of SARS-CoV-2 infections in children remains unclear due to many asymptomatic cases. We present a study of cross-sectional seroprevalence surveys of anti-SARS-CoV-2 IgG in 10,358 children recruited in paediatric hospitals across Germany from June 2020 to May 2021. Seropositivity increased from 2.0% (95% CI 1.6, 2.5) to 10.8% (95% CI 8.7, 12.9) in March 2021 with little change up to May 2021. Rates increased by migrant background (2.8%, 4.4% and 7.8% for no, one and two parents born outside Germany). Children under three were initially 3.6 (95% CI 2.3, 5.7) times more likely to be seropositive with levels equalising later. The ratio of seropositive cases per recalled infection decreased from 8.6 to 2.8. Since seropositivity exceeds the rate of recalled infections considerably, serologic testing may provide a more valid estimate of infections, which is required to assess both the spread and the risk for severe outcomes of SARS-CoV-2 infections.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/epidemiologia , Criança , Estudos Transversais , Alemanha/epidemiologia , Humanos , Estudos Soroepidemiológicos
16.
Metabolites ; 12(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629877

RESUMO

S-adenosylmethionine (SAM) is essential for methyl transfer reactions. All SAM is produced de novo via the methionine cycle. The demethylation of SAM produces S-adenosylhomocysteine (SAH), an inhibitor of methyltransferases and the precursor of homocysteine (Hcy). The measurement of SAM and SAH in plasma has value in the diagnosis of inborn errors of metabolism (IEM) and in research to assess methyl group homeostasis. The determination of SAM and SAH is complicated by the instability of SAM under neutral and alkaline conditions and the naturally low concentration of both SAM and SAH in plasma (nM range). Herein, we describe an optimised LC-MS/MS method for the determination of SAM and SAH in plasma, urine, and cells. The method is based on isotopic dilution and employs 20 µL of plasma or urine, or 500,000 cells, and has an instrumental running time of 5 min. The reference ranges for plasma SAM and SAH in a cohort of 33 healthy individuals (age: 19-60 years old; mean ± 2 SD) were 120 ± 36 nM and 21.5 ± 6.5 nM, respectively, in accordance with independent studies and diagnostic determinations. The method detected abnormal concentrations of SAM and SAH in patients with inborn errors of methyl group metabolism. Plasma and urinary SAM and SAH concentrations were determined for the first time in a randomised controlled trial of 53 healthy adult omnivores (age: 18-60 years old), before and after a 4 week intervention with a vegan or meat-rich diet, and revealed preserved variations of both metabolites and the SAM/SAH index.

17.
JIMD Rep ; 63(3): 207-210, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35433174

RESUMO

Axonal peripheral neuropathy is a common complication of mitochondrial trifunctional protein (MTP) deficiency and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency that is usually considered progressive. Current treatment strategies are not able to fully prevent neuropathic symptoms in the majority of patients. We herein report three sisters with genetically proven MTP deficiency who were untreated until adolescence, when electrophysiological studies first revealed isolated axonal sensory neuropathy. Apart from mild exercise intolerance and missing deep tendon reflexes of the lower extremities, all three girls were clinically asymptomatic. A fat-reduced and fat-modified diet together with a reduction of the nocturnal fasting time resulted in complete normalisation of the electrophysiological studies after 1 year of dietary treatment. Our findings suggest that neuropathy might be responsive to dietary interventions in MTP patients at a very early stage of disease.

18.
Dtsch Arztebl Int ; 119(17): 306-316, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35140012

RESUMO

BACKGROUND: Neonatal screening in Germany currently comprises 19 congenital diseases, 13 of which are metabolic diseases. Approximately one in 1300 newborns suffers from one of these target diseases. Early diagnosis and treatment enable the affected children to undergo better development and even, in many cases, to have a normal life. METHODS: This review is based on pertinent publications retrieved by a selective search in the PubMed and Embase databases. RESULTS: Positive screening findings are confirmed in approximately one out of five newborns. The prompt evaluation of suspected diagnoses is essential, as treatment for some of these diseases must be initiated immediately after birth to prevent longterm sequelae. The most commonly identified diseases are primary hypothyroidism (1:3338), phenylketonuria/hyperphenylalaninemia (1 : 5262), cystic fibrosis (1 : 5400), and medium-chain acyl-CoA dehydrogenase deficiency (1 : 10 086). Patient numbers are rising as new variants of the target diseases are being identified, and treatments must be adapted to their heterogeneous manifestations. Precise diagnosis and the planning of treatment, which is generally lifelong, are best carried out in a specialized center. CONCLUSION: Improved diagnosis and treatment now prolong the lives of many patients with congenital diseases. The provision of appropriate long-term treatment extending into adulthood will be a central structural task for screening medicine in the future.


Assuntos
Fibrose Cística , Erros Inatos do Metabolismo Lipídico , Triagem Neonatal , Acil-CoA Desidrogenase , Fibrose Cística/diagnóstico , Fibrose Cística/epidemiologia , Diagnóstico Precoce , Alemanha/epidemiologia , Humanos , Hipotireoidismo/diagnóstico , Hipotireoidismo/epidemiologia , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/epidemiologia , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/epidemiologia
19.
Genes (Basel) ; 12(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34828390

RESUMO

Fanconi-Bickel syndrome (FBS) is a very rare but distinct clinical entity with the combined features of hepatic glycogen storage disease, generalized proximal renal tubular dysfunction with disproportionately severe glucosuria, and impaired galactose tolerance. Here, we report five cases (out of 93 diagnosed in our lab) with pathogenic variants on both GLUT2 (SLC2A2) alleles. They come from 3 families and presented with an exceptionally mild clinical course. This course was correlated to data from old and most recent expression and transport studies in Xenopus oocytes. GLUT2 genotype in patients 1 and 2 was p.[153_4delLI];[P417R] with the first variant exhibiting normal membrane expression and partially retained transport activity (5.8%) for 2-deoxyglucose. In patient 3, the very first GLUT2 variant ever detected (p.V197I) was found, but for the first time it was present in a patient in the homozygous state. This variant had also shown unaffected membrane expression and remarkable residual activity (8%). The genotype in patient 4, p.[153_4delLI];[(E440A)], again included the 2-amino-acid deletion with residual transporter function, and patient 5 is the first found to be homozygous for this variant. Our results provide further evidence for a genotype-phenotype correlation in patients with GLUT2 variants; non-functional variants result in the full picture of FBS while dysfunctional variants may result in milder presentations, even glucosuria only, without other typical signs of FBS.


Assuntos
Síndrome de Fanconi/genética , Transportador de Glucose Tipo 2/genética , Mutação , Fenótipo , Adolescente , Adulto , Animais , Síndrome de Fanconi/patologia , Feminino , Genótipo , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...