Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(16): 163401, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925735

RESUMO

We experimentally and theoretically investigate the anisotropic speed of sound of an atomic superfluid (SF) Bose-Einstein condensate in a 1D optical lattice. Because the speed of sound derives from the SF density, this implies that the SF density is itself anisotropic. We find that the speed of sound is decreased by the optical lattice, and the SF density is concomitantly reduced. This reduction is accompanied by the appearance of a zero entropy normal fluid in the purely Bose condensed phase. The reduction in SF density-first predicted [A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).PRLTAO0031-900710.1103/PhysRevLett.25.1543] in the context of supersolidity-results from the coexistence of superfluidity and density modulations, but is agnostic about the origin of the modulations. We additionally measure the moment of inertia of the system in a scissors mode experiment, demonstrating the existence of rotational flow. As such we shed light on some supersolid properties using imposed, rather than spontaneously formed, density order.

2.
Phys Rev Res ; 5(2)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720362

RESUMO

Ultracold atoms are an ideal platform for understanding system-reservoir dynamics of many-body systems. Here, we study quantum back-action in atomic Bose-Einstein condensates, weakly interacting with a far-from resonant, i.e., dispersively interacting, probe laser beam. The light scattered by the atoms can be considered as a part of quantum measurement process, whereby the change in the system state derives from measurement back-action. We experimentally quantify the resulting back-action in terms of the deposited energy. We model the interaction of the system and environment with a generalized measurement process, leading to a Markovian reservoir. Further, we identify two systematic sources of heating and loss: a stray optical lattice and probe-induced light-assisted collisions (an intrinsic atomic process). The observed heating and loss rates are larger for blue detuning than for red detuning, where they are oscillatory functions of detuning with increased loss at molecular resonances and reduced loss between molecular resonances.

3.
Opt Express ; 31(11): 17893-17908, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381511

RESUMO

A majority of ultracold atom experiments utilize resonant absorption imaging techniques to obtain the atomic density. To make well-controlled quantitative measurements, the optical intensity of the probe beam must be precisely calibrated in units of the atomic saturation intensity Isat. In quantum gas experiments, the atomic sample is enclosed in an ultra-high vacuum system that introduces loss and limits optical access; this precludes a direct determination of the intensity. Here, we use quantum coherence to create a robust technique for measuring the probe beam intensity in units of Isat via Ramsey interferometry. Our technique characterizes the ac Stark shift of the atomic levels due to an off-resonant probe beam. Furthermore, this technique gives access to the spatial variation of the probe intensity at the location of the atomic cloud. By directly measuring the probe intensity just before the imaging sensor our method in addition yields a direct calibration of imaging system losses as well as the quantum efficiency of the sensor.

4.
J Phys Condens Matter ; 51(1)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36317280

RESUMO

Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional (3D) Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results. Motivated by numerous experimental efforts, including our own herein, we use fully 3D numerical simulations to explore the existence, stability, and evolution dynamics of planar dark solitons. This also allows us to examine their instability-induced decay products including solitonic vortices and vortex rings. In the trapped case and with no adjustable parameters, our numerical findings are in correspondence with experimentally observed coherent structures. Without a longitudinal trap, we identify numerically exact traveling solutions and quantify how their transverse destabilization threshold changes as a function of the solitary wave speed.

5.
Phys Rev Lett ; 129(12): 123202, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179173

RESUMO

Nontrivial topology in lattices is characterized by invariants-such as the Zak phase for one-dimensional (1D) lattices-derived from wave functions covering the Brillouin zone. We realize the 1D bipartite Rice-Mele (RM) lattice using ultracold ^{87}Rb and focus on lattice configurations possessing various combinations of chiral, time-reversal, and particle-hole symmetries. We quench between configurations and use a form of quantum state tomography, enabled by diabatically tuning lattice parameters, to directly follow the time evolution of the Zak phase as well as a chiral winding number. The Zak phase evolves continuously; however, when chiral symmetry transiently appears in the out-of-equilibrium system, the chiral winding number becomes well defined and can take on any integer value. When quenching between two configurations obeying the same three symmetries, the Zak phase is time independent; we confirm the dynamically induced symmetry breaking predicted in [McGinley and Cooper, Phys. Rev. Lett. 121, 090401 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.090401] that chiral symmetry is periodically restored, at which times the winding number changes by ±2, yielding values that are not present in the native RM Hamiltonian.

6.
Phys Rev Lett ; 129(4): 040402, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939027

RESUMO

We experimentally realized a time-periodically modulated 1D lattice for ultracold atoms featuring a pair of linear bands, each with a Floquet winding number. These bands are spin-momentum locked and almost perfectly linear everywhere in the Brillouin zone: a near-ideal realization of the 1D Dirac Hamiltonian. We characterized the Floquet winding number using a form of quantum state tomography, covering the Brillouin zone and following the micromotion through one Floquet period. Last, we altered the modulation timing to lift the topological protection, opening a gap at the Dirac point that grew in proportion to the deviation from the topological configuration.

7.
Phys Rev Lett ; 128(9): 090401, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302825

RESUMO

In the expanding universe, relativistic scalar fields are thought to be attenuated by "Hubble friction," which results from the dilation of the underlying spacetime metric. By contrast, in a contracting universe this pseudofriction would lead to amplification. Here, we experimentally measure, with fivefold better accuracy, both Hubble attenuation and amplification in expanding and contracting toroidally shaped Bose-Einstein condensates, in which phonons are analogous to cosmological scalar fields. We find that the observed attenuation or amplification depends on the temporal phase of the phonon field, which is only possible for nonadiabatic dynamics. The measured strength of the Hubble friction disagrees with recent theory [Gomez Llorente et al., Phys. Rev. A 100, 043613 (2019)PLRAAN2469-992610.1103/PhysRevA.100.043613 and Eckel et al., SciPost Phys. 10, 64 (2021)SPCHCW2542-465310.21468/SciPostPhys.10.3.064].

8.
Opt Express ; 29(11): 17029-17041, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154254

RESUMO

In cold atom experiments, each image of light refracted and absorbed by an atomic ensemble carries a remarkable amount of information. Numerous imaging techniques including absorption, fluorescence, and phase-contrast are commonly used. Other techniques such as off-resonance defocused imaging (ORDI, [1-4]), where an in-focus image is deconvolved from a defocused image, have been demonstrated but find only niche applications. The ORDI inversion process introduces systematic artifacts because it relies on regularization to account for missing information at some spatial frequencies. In the present work, we extend ORDI to use multiple cameras simultaneously at degrees of defocus, eliminating the need for regularization and its attendant artifacts. We demonstrate this technique by imaging Bose-Einstein condensates, and show that the statistical uncertainties in the measured column density using the multiple-camera off-resonance defocused (McORD) imaging method are competitive with absorption imaging near resonance and phase contrast imaging far from resonance. Experimentally, the McORD method may be incorporated into existing set-ups with minimal additional equipment.

9.
Nat Commun ; 12(1): 593, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500408

RESUMO

Topological order can be found in a wide range of physical systems, from crystalline solids, photonic meta-materials and even atmospheric waves to optomechanic, acoustic and atomic systems. Topological systems are a robust foundation for creating quantized channels for transporting electrical current, light, and atmospheric disturbances. These topological effects are quantified in terms of integer-valued 'invariants', such as the Chern number, applicable to the quantum Hall effect, or the [Formula: see text] invariant suitable for topological insulators. Here, we report the engineering of Rashba spin-orbit coupling for a cold atomic gas giving non-trivial topology, without the underlying crystalline structure that conventionally yields integer Chern numbers. We validated our procedure by spectroscopically measuring both branches of the Rashba dispersion relation which touch at a single Dirac point. We then measured the quantum geometry underlying the dispersion relation using matter-wave interferometry to implement a form of quantum state tomography, giving a Berry's phase with magnitude π. This implies that opening a gap at the Dirac point would give two dispersions (bands) each with half-integer Chern number, potentially implying new forms of topological transport.

10.
Phys Rev Res ; 3(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36632324

RESUMO

High-resolution imaging of ultracold atoms typically requires custom high numerical aperture (NA) optics, as is the case for quantum gas microscopy. These high NA objectives involve many optical elements, each of which contributes to loss and light scattering, making them unsuitable for quantum backaction limited "weak" measurements. We employ a low-cost high NA aspheric lens as an objective for a practical and economical-although aberrated-high-resolution microscope to image 87Rb Bose-Einstein condensates. Here, we present a methodology for digitally eliminating the resulting aberrations that is applicable to a wide range of imaging strategies and requires no additional hardware. We recover nearly the full NA of our objective, thereby demonstrating a simple and powerful digital aberration correction method for achieving optimal microscopy of quantum objects. This reconstruction relies on a high-quality measure of our imaging system's even-order aberrations from density-density correlations measured with differing degrees of defocus. We demonstrate our aberration compensation technique using phase-contrast imaging, a dispersive imaging technique directly applicable to quantum backaction limited measurements. Furthermore, we show that our digital correction technique reduces the contribution of photon shot noise to density-density correlation measurements which would otherwise contaminate the desired quantum projection noise signal in weak measurements.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36733297

RESUMO

Most data in cold-atom experiments comes from images, the analysis of which is limited by our preconceptions of the patterns that could be present in the data. We focus on the well-defined case of detecting dark solitons-appearing as local density depletions in a Bose-Einstein condensate (BEC)-using a methodology that is extensible to the general task of pattern recognition in images of cold atoms. Studying soliton dynamics over a wide range of parameters requires the analysis of large datasets, making the existing human-inspection-based methodology a significant bottleneck. Here we describe an automated classification and positioning system for identifying localized excitations in atomic BECs utilizing deep convolutional neural networks to eliminate the need for human image examination. Furthermore, we openly publish our labeled dataset of dark solitons, the first of its kind, for further machine learning research.

12.
Phys Rev Lett ; 124(5): 053605, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083899

RESUMO

Spin-orbit-coupled Bose-Einstein condensates (SOBECs) exhibit two new phases of matter, now known as the stripe and plane-wave phases. When two interacting spin components of a SOBEC spatially overlap, density modulations with periodicity given by the spin-orbit coupling strength appear. In equilibrium, these components fully overlap in the miscible stripe phase and overlap only in a domain wall in the immiscible plane-wave phase. Here we probe the density modulation present in any overlapping region with optical Bragg scattering and observe the sudden drop of Bragg scattering as the overlapping region shrinks. Using an atomic analog of the Talbot effect, we demonstrate the existence of long-range coherence between the different spin components in the stripe phase and surprisingly even in the phase-separated plane-wave phase.

13.
Phys Rev A (Coll Park) ; 101(5)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34136731

RESUMO

Established techniques for deterministically creating dark solitons in repulsively interacting atomic Bose-Einstein condensates (BECs) can only access a narrow range of soliton velocities. Because velocity affects the stability of individual solitons and the properties of soliton-soliton interactions, this technical limitation has hindered experimental progress. Here we create dark solitons in highly anisotropic cigar-shaped BECs with arbitrary position and velocity by simultaneously engineering the amplitude and phase of the condensate wave function, improving upon previous techniques which explicitly manipulated only the condensate phase. The single dark soliton solution present in true one-dimensional (1D) systems corresponds to the kink soliton in anisotropic three-dimensional systems and is joined by a host of additional dark solitons, including vortex ring and solitonic vortex solutions. We readily create dark solitons with speeds from zero to half the sound speed. The observed soliton oscillation frequency suggests that we imprinted solitonic vortices, which for our cigar-shaped system are the only stable solitons expected for these velocities. Our numerical simulations of 1D BECs show this technique to be equally effective for creating kink solitons when they are stable. We demonstrate the utility of this technique by deterministically colliding dark solitons with domain walls in two-component spinor BECs.

14.
Phys Rev A (Coll Park) ; 102(3)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34164587

RESUMO

Anderson localization is a single-particle localization phenomena in disordered media that is accompanied by an absence of diffusion. Spin-orbit coupling (SOC) describes an interaction between a particle's spin and its momentum that directly affects its energy dispersion, for example, creating dispersion relations with gaps and multiple local minima. We show theoretically that combining one-dimensional spin-orbit coupling with a transverse Zeeman field suppresses the effects of disorder, thereby increasing the localization length and conductivity. This increase results from a suppression of backscattering between states in the gap of the SOC dispersion relation. Here, we focus specifically on the interplay of disorder from an optical speckle potential and SOC generated by two-photon Raman processes in quasi-one-dimensional Bose-Einstein condensates. We first describe backscattering by using a Fermi golden rule approach, and then numerically confirm this picture by solving the time-dependent one-dimensional Gross-Pitaevskii equation for a weakly interacting Bose-Einstein condensate with SOC and disorder. We find that on the tens of millisecond timescale of typical cold atom experiments moving in harmonic traps, initial states with momentum in the zero-momentum SOC gap evolve with negligible backscattering, while without SOC these same states rapidly localize.

15.
Phys Rev Res ; 2(4)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34476407

RESUMO

Weak measurement in tandem with real-time feedback control is a new route toward engineering novel nonequilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction with spatially resolved feedback. Feedback in the form of a single-particle potential can introduce effective interactions that enter into the stochastic equation governing system dynamics. The effective interactions are tunable and can be made analogous to Feshbach resonances-spin independent and spin dependent-but without changing atomic scattering parameters. Feedback cooling prevents runaway heating due to measurement backaction and we present an analytical model to explain its effectiveness. We showcase our toolbox by studying a two-component BEC using a stochastic mean-field theory, where feedback induces a phase transition between easy-axis ferromagnet and spin-disordered paramagnet phases. We present the steady-state phase diagram as a function of intrinsic and effective spin-dependent interaction strengths. Our result demonstrates that closed-loop quantum control of Bose-Einstein condensates is a powerful tool for quantum engineering in cold-atom systems.

16.
Phys Rev Res ; 2(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34796336

RESUMO

We propose and describe our realization of a deeply subwavelength optical lattice for ultracold neutral atoms using N resonantly Raman-coupled internal degrees of freedom. Although counterpropagating lasers with wavelength λ provided two-photon Raman coupling, the resultant lattice period was λ/2N, an N-fold reduction as compared to the conventional λ/2 lattice period. We experimentally demonstrated this lattice built from the three F = 1 Zeeman states of a 87Rb Bose-Einstein condensate, and generated a lattice with a λ/6 = 132 nm period from λ = 790 nm lasers. Lastly, we show that adding an additional rf-coupling field converts this lattice into a superlattice with N wells uniformly spaced within the original λ/2 unit cell.

17.
Sci Rep ; 9(1): 7471, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097782

RESUMO

In the presence of strong spin-independent interactions and spin-orbit coupling, we show that the spinor Bose liquid confined to one spatial dimension undergoes an interaction- or density-tuned quantum phase transition similar to one theoretically proposed for itinerant magnetic solid-state systems. The order parameter describes broken Z2 inversion symmetry, with the ordered phase accompanied by non-vanishing momentum which is generated by fluctuations of an emergent dynamical gauge field at the phase transition. This quantum phase transition has dynamical critical exponent z ≃ 2, typical of a Lifshitz transition, but is described by a nontrivial interacting fixed point. From direct numerical simulation of the microscopic model, we extract previously unknown critical exponents for this fixed point. Our model describes a realistic situation of 1D ultracold atoms with Raman-induced spin-orbit coupling, establishing this system as a platform for studying exotic critical behavior of the Hertz-Millis type.

18.
Phys Rev Lett ; 122(12): 120502, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978046

RESUMO

The multiscale entanglement renormalization ansatz (MERA) postulates the existence of quantum circuits that renormalize entanglement in real space at different length scales. Chern insulators, however, cannot have scale-invariant discrete MERA circuits with a finite bond dimension. In this Letter, we show that the continuous MERA (cMERA), a modified version of MERA adapted for field theories, possesses a fixed point wave function with a nonzero Chern number. Additionally, it is well known that reversed MERA circuits can be used to prepare quantum states efficiently in time that scales logarithmically with the size of the system. However, state preparation via MERA typically requires the advent of a full-fledged universal quantum computer. In this Letter, we demonstrate that our cMERA circuit can potentially be realized in existing analog quantum computers, i.e., an ultracold atomic Fermi gas in an optical lattice with light-induced spin-orbit coupling.

19.
New J Phys ; 21(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32855619

RESUMO

Physical systems with non-trivial topological order find direct applications in metrology (Klitzing et al 1980 Phys. Rev. Lett. 45 494-7) and promise future applications in quantum computing (Freedman 2001 Found. Comput. Math. 1 183-204; Kitaev 2003 Ann. Phys. 303 2-30). The quantum Hall effect derives from transverse conductance, quantized to unprecedented precision in accordance with the system's topology (Laughlin 1981 Phys. Rev. B 23 5632-33). At magnetic fields beyond the reach of current condensed matter experiment, around 104 T, this conductance remains precisely quantized with values based on the topological order (Thouless et al 1982 Phys. Rev. Lett. 49 405-8). Hitherto, quantized conductance has only been measured in extended 2D systems. Here, we experimentally studied narrow 2D ribbons, just 3 or 5 sites wide along one direction, using ultracold neutral atoms where such large magnetic fields can be engineered (Jaksch and Zoller 2003 New J. Phys. 5 56; Miyake et al 2013 Phys. Rev. Lett. 111 185302; Aidelsburger et al 2013 Phys. Rev. Lett. 111 185301; Celi et al 2014 Phys. Rev. Lett. 112 043001; Stuhl etal 2015 Science 349 1514; Mancini et al 2015 Science 349 1510; An et al 2017 Sci. Adv. 3). We microscopically imaged the transverse spatial motion underlying the quantized Hall effect. Our measurements identify the topological Chern numbers with typical uncertainty of 5%, and show that although band topology is only properly defined in infinite systems, its signatures are striking even in nearly vanishingly thin systems.

20.
Rev Mod Phys ; 91(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32189812

RESUMO

There have been significant recent advances in realizing band structures with geometrical and topological features in experiments on cold atomic gases. This review summarizes these developments, beginning with a summary of the key concepts of geometry and topology for Bloch bands. Descriptions are given of the different methods that have been used to generate these novel band structures for cold atoms and of the physical observables that have allowed their characterization. The focus is on the physical principles that underlie the different experimental approaches, providing a conceptual framework within which to view these developments. Also described is how specific experimental implementations can influence physical properties. Moving beyond single-particle effects, descriptions are given of the forms of interparticle interactions that emerge when atoms are subjected to these energy bands and of some of the many-body phases that may be sought in future experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...