Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(10): 15564-15578, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157655

RESUMO

We report the resonantly enhanced radiative emission from a single SiGe quantum dot (QD), which is deterministically embedded into a bichromatic photonic crystal resonator (PhCR) at the position of its largest modal electric field by a scalable method. By optimizing our molecular beam epitaxy (MBE) growth technique, we were able to reduce the amount of Ge within the whole resonator to obtain an absolute minimum of exactly one QD, accurately positioned by lithographic methods relative to the PhCR, and an otherwise flat, a few monolayer thin, Ge wetting layer (WL). With this method, record quality (Q) factors for QD-loaded PhCRs up to Q ∼ 105 are achieved. A comparison with control PhCRs on samples containing a WL but no QDs is presented, as well as a detailed analysis of the dependence of the resonator-coupled emission on temperature, excitation intensity, and emission decay after pulsed excitation. Our findings undoubtedly confirm a single QD in the center of the resonator as a potentially novel photon source in the telecom spectral range.

2.
Sci Rep ; 11(1): 20597, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663889

RESUMO

The Si/SiGe heterosystem would be ideally suited for the realization of complementary metal-oxide-semiconductor (CMOS)-compatible integrated light sources, but the indirect band gap, exacerbated by a type-II band offset, makes it challenging to achieve efficient light emission. We address this problem by strain engineering in ordered arrays of vertically close-stacked SiGe quantum dot (QD) pairs. The strain induced by the respective lower QD creates a preferential nucleation site for the upper one and strains the upper QD as well as the Si cap above it. Electrons are confined in the strain pockets in the Si cap, which leads to an enhanced wave function overlap with the heavy holes near the upper QD's apex. With a thickness of the Si spacer between the stacked QDs below 5 nm, we separated the functions of the two QDs: The role of the lower one is that of a pure stressor, whereas only the upper QD facilitates radiative recombination of QD-bound excitons. We report on the design and strain engineering of the QD pairs via strain-dependent Schrödinger-Poisson simulations, their implementation by molecular beam epitaxy, and a comprehensive study of their structural and optical properties in comparison with those of single-layer SiGe QD arrays. We find that the double QD arrangement shifts the thermal quenching of the photoluminescence signal at higher temperatures. Moreover, detrimental light emission from the QD-related wetting layers is suppressed in the double-QD configuration.

3.
ACS Photonics ; 4(3): 665-673, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28345012

RESUMO

Efficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities. Extensive photoluminescence studies on this cavity chip enable a direct evaluation of the position-dependent coupling efficiency between single dots and selected cavity modes. The experimental results demonstrate the great potential of the approach allowing CMOS-compatible parallel fabrication of arrays of spatially matched dot/cavity systems for group-IV-based data transfer or quantum optical systems in the telecom regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...