Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 879076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646045

RESUMO

In this study, we investigated the biostimulant effect of fungal culture filtrates obtained from Chaetomium globosum and Minimedusa polyspora on growth performance and metabolomic traits of chicory (Cichorium intybus) plants. For the first time, we showed that M. polyspora culture filtrate exerts a direct plant growth-promoting effect through an increase of biomass, both in shoots and roots, and of the leaf area. Conversely, no significant effect on morphological traits and biomass yield was observed in C. intybus plants treated with C. globosum culture filtrate. Based on 1H-NMR metabolomics data, differential metabolites and their related metabolic pathways were highlighted. The treatment with C. globosum and M. polyspora culture filtrates stimulated a common response in C. intybus roots involving the synthesis of 3-OH-butyrate through the decrease in the synthesis of fatty acids and sterols, as a mechanism balancing the NADPH/NADP+ ratio. The fungal culture filtrates differently triggered the phenylpropanoid pathway in C. intybus plants: C. globosum culture filtrate increased phenylalanine and chicoric acid in the roots, whereas M. polyspora culture filtrate stimulated an increase of 4-OH-benzoate. Chicoric acid, whose biosynthetic pathway in the chicory plant is putative and still not well known, is a very promising natural compound playing an important role in plant defense. On the contrary, benzoic acids serve as precursors for a wide variety of essential compounds playing crucial roles in plant fitness and defense response activation. To the best of our knowledge, this is the first study that shows the biostimulant effect of C. globosum and M. polyspora culture filtrates on C. intybus growth and metabolome, increasing the knowledge on fungal bioresources for the development of biostimulants.

2.
Microorganisms ; 9(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835305

RESUMO

Glyphosate is the most commonly used herbicide worldwide. Its improper use during recent decades has resulted in glyphosate contamination of soils and waters. Fungal bioremediation is an environmentally friendly, cost effective, and feasible solution to glyphosate contamination in soils. In this study, several saprotrophic fungi isolated from agricultural environments were screened for their ability to tolerate and utilise Roundup in different cultural conditions as a nutritional source. Purpureocillium lilacinum was further screened to evaluate the ability to break down and utilise glyphosate as a P source in a liquid medium. The dose-response effect for Roundup, and the difference in toxicity between pure glyphosate and Roundup were also studied. This study reports the ability of several strains to tolerate 1 mM and 10 mM Roundup and to utilise it as nutritional source. P. lilacinum was reported for the first time for its ability to degrade glyphosate to a considerable extent (80%) and to utilise it as a P source, without showing dose-dependent negative effects on growth. Pure glyphosate was found to be more toxic than Roundup for P. lilacinum. Our results showed that pure glyphosate toxicity can be only partially addressed by the pH decrease determined in the culture medium. In conclusion, our study emphasises the noteworthy potential of P. lilacinum in glyphosate degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...