Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(1): 98-111, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955135

RESUMO

Salt sensitivity impacts a significant portion of the population and is an important contributor to the development of chronic kidney disease. One of the significant early predictors of salt-induced damage is albuminuria, which reflects the deterioration of the renal filtration barrier: the glomerulus. Despite significant research efforts, there is still a gap in knowledge regarding the molecular mechanisms and signaling networks contributing to instigating and/or perpetuating salt-induced glomerular injury. To address this gap, we used 8-wk-old male Dahl salt-sensitive rats fed a normal-salt diet (0.4% NaCl) or challenged with a high-salt diet (4% NaCl) for 3 wk. At the end of the protocol, a pure fraction of renal glomeruli obtained by differential sieving was used for next-generation RNA sequencing and comprehensive semi-automatic transcriptomic data analyses, which revealed 149 differentially expressed genes (107 and 42 genes were downregulated and upregulated, respectively). Furthermore, a combination of predictive gene correlation networks and computational bioinformatic analyses revealed pathways impacted by a high salt dietary challenge, including renal metabolism, mitochondrial function, apoptotic signaling and fibrosis, cell cycle, inflammatory and immune responses, circadian clock, cytoskeletal organization, G protein-coupled receptor signaling, and calcium transport. In conclusion, we report here novel transcriptomic interactions and corresponding predicted pathways affecting glomeruli under salt-induced stress.NEW & NOTEWORTHY Our study demonstrated novel pathways affecting glomeruli under stress induced by dietary salt. Predictive gene correlation networks and bioinformatic semi-automatic analysis revealed changes in the pathways relevant to mitochondrial function, inflammatory, apoptotic/fibrotic processes, and cell calcium transport.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Ratos , Animais , Masculino , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio/metabolismo , Hipertensão/genética , Ratos Endogâmicos Dahl , Pressão Sanguínea , Cálcio/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica , Rim/metabolismo
3.
Am J Physiol Renal Physiol ; 325(1): F105-F120, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227223

RESUMO

Histamine is involved in the regulation of immune response, vasodilation, neurotransmission, and gastric acid secretion. Although elevated histamine levels and increased expression of histamine metabolizing enzymes have been reported in renal disease, there is a gap in knowledge regarding the mechanisms of histamine-related pathways in the kidney. We report here that all four histamine receptors as well as enzymes responsible for the metabolism of histamine are expressed in human and rat kidney tissues. In this study, we hypothesized that the histaminergic system plays a role in salt-induced kidney damage in the Dahl salt-sensitive (DSS) rat, a model characterized with inflammation-driven renal lesions. To induce renal damage related to salt sensitivity, DSS rats were challenged with 21 days of a high-salt diet (4% NaCl); normal-salt diet (0.4% NaCl)-fed rats were used as a control. We observed lower histamine decarboxylase and higher histamine N-methyltransferase levels in high-salt diet-fed rats, indicative of a shift in histaminergic tone; metabolomics showed higher histamine and histidine levels in the kidneys of high-salt diet-fed rats, whereas plasma levels for both compounds were lower. Acute systemic inhibition of histamine receptor 2 in the DSS rat revealed that it lowered vasopressin receptor 2 in the kidney. In summary, we established here the existence of the local histaminergic system, revealed a shift in the renal histamine balance during salt-induced kidney damage, and provided evidence that blockage of histamine receptor 2 in the DSS rat affects water balance and urine concentrating mechanisms.NEW & NOTEWORTHY Histamine is a nitrogenous compound crucial for the inflammatory response. The knowledge regarding the renal effects of histamine is very limited. We showed that renal epithelia exhibit expression of the components of the histaminergic system. Furthermore, we revealed that there was a shift in the histaminergic tone in salt-sensitive rats when they were challenged with a high-salt diet. These data support the notion that histamine plays a role in renal epithelial physiological and pathophysiological functions.


Assuntos
Hipertensão , Nefropatias , Humanos , Ratos , Animais , Ratos Endogâmicos Dahl , Histamina/farmacologia , Cloreto de Sódio/metabolismo , Rim/metabolismo , Nefropatias/patologia , Cloreto de Sódio na Dieta/metabolismo , Receptores Histamínicos/metabolismo , Pressão Sanguínea
4.
Can J Physiol Pharmacol ; 101(3): 136-146, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450128

RESUMO

Endothelin-1 (ET-1) is a peptide hormone that acts on its receptors to regulate sodium handling in the kidney's collecting duct. Dysregulation of the endothelin axis is associated with various diseases, including salt-sensitive hypertension and chronic kidney disease. Previously, our lab has shown that the circadian clock gene PER1 regulates ET-1 levels in mice. However, the regulation of ET-1 by PER1 has never been investigated in rats. Therefore, we used a novel model where knockout of Per1 was performed in Dahl salt-sensitive rat background (SS Per1 -/-) to test a hypothesis that PER1 regulates the ET-1 axis in this model. Here, we show increased renal ET-1 peptide levels and altered endothelin axis gene expression in several tissues, including the kidney, adrenal glands, and liver in SS Per1 -/- compared with control SS rats. Edn1 antisense lncRNA Edn1-AS, which has previously been suggested to be regulated by PER1, was also altered in SS Per1 -/- rats compared with control SS rats. These data further support the hypothesis that PER1 is a negative regulator of Edn1 and is important in the regulation of the endothelin axis in a tissue-specific manner.


Assuntos
Relógios Circadianos , Hipertensão , Ratos , Camundongos , Animais , Ratos Endogâmicos Dahl , Relógios Circadianos/genética , Endotelinas , Rim/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Fatores de Transcrição/metabolismo , Pressão Sanguínea/fisiologia , Proteínas Circadianas Period/genética
5.
Hypertension ; 79(11): 2519-2529, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36093781

RESUMO

BACKGROUND: Circadian rhythms play an essential role in physiological function. The molecular clock that underlies circadian physiological function consists of a core group of transcription factors, including the protein PER1 (Period1). Studies in mice show that PER1 plays a role in the regulation of blood pressure and renal sodium handling; however, the results are dependent on the strain being studied. Using male Dahl salt-sensitive (SS) rats with global knockout of PER1 (SSPer1-/-), we aim to test the hypothesis that PER1 plays a key role in the regulation of salt-sensitive blood pressure. METHODS: The model was generated using CRISPR/Cas9 and was characterized using radiotelemetry and measures of renal function and circadian rhythm. RESULTS: SSPer1-/- rats had similar mean arterial pressure when fed a normal 0.4% NaCl diet but developed augmented hypertension after three weeks on a high-salt (4% NaCl) diet. Despite being maintained on a normal 12:12 light:dark cycle, SSPer1-/- rats exhibited desynchrony mean arterial pressure rhythms on a high-salt diet, as evidenced by increased variability in the time of peak mean arterial pressure. SSPer1-/- rats excrete less sodium after three weeks on the high-salt diet. Furthermore, SSPer1-/- rats exhibited decreased creatinine clearance, a measurement of renal function, as well as increased signs of kidney tissue damage. SSPer1-/- rats also exhibited higher plasma aldosterone levels. CONCLUSIONS: Altogether, our findings demonstrate that loss of PER1 in Dahl SS rats causes an array of deleterious effects, including exacerbation of the development of salt-sensitive hypertension and renal damage.


Assuntos
Relógios Circadianos , Hipertensão , Nefropatias , Animais , Masculino , Ratos , Pressão Sanguínea/fisiologia , Relógios Circadianos/genética , Hipertensão/genética , Hipertensão/metabolismo , Rim/metabolismo , Camundongos Knockout , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ratos Endogâmicos Dahl , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Fatores de Transcrição/metabolismo
6.
iScience ; 25(9): 104887, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36039296

RESUMO

Uric acid (UA) is the final metabolite in purine catabolism in humans. Previous studies have shown that the dysregulation of UA homeostasis is detrimental to cardiovascular and kidney health. The Xdh gene encodes for the Xanthine Oxidoreductase enzyme group, responsible for producing UA. To explore how hypouricemia can lead to kidney damage, we created a rat model with the genetic ablation of the Xdh gene on the Dahl salt-sensitive rat background (SSXdh-/-). SSXdh-/- rats lacked UA and exhibited impairment in growth and survival. This model showed severe kidney injury with increased interstitial fibrosis, glomerular damage, crystal formation, and an inability to control electrolyte balance. Using a multi-omics approach, we highlighted that lack of Xdh leads to increased oxidative stress, renal cell proliferation, and inflammation. Our data reveal that the absence of Xdh leads to kidney damage and functional decline by the accumulation of purine metabolites in the kidney and increased oxidative stress.

7.
Am J Physiol Renal Physiol ; 323(4): F389-F400, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834273

RESUMO

Competent statistical analysis is essential to maintain rigor and reproducibility in physiological research. Unfortunately, the benefits offered by statistics are often negated by misuse or inadequate reporting of statistical methods. To address the need for improved quality of statistical analysis in papers, the American Physiological Society released guidelines for reporting statistics in journals published by the society. The guidelines reinforce high standards for the presentation of statistical data in physiology but focus on the conceptual challenges and, thus, may be of limited use to an unprepared reader. Experimental scientists working in the renal field may benefit from putting the existing guidelines in a practical context. This paper discusses the application of widespread hypothesis tests in a confirmatory study. We simulated pharmacological experiments assessing intracellular calcium in cultured renal cells and kidney function at the systemic level to review best practices for data analysis, graphical presentation, and reporting. Such experiments are ubiquitously used in renal physiology and could be easily translated to other practical applications to fit the reader's specific needs. We provide step-by-step guidelines for using the most common types of t tests and ANOVA and discuss typical mistakes associated with them. We also briefly consider normality tests, exclusion criteria, and identification of technical and experimental replicates. This review is supposed to help the reader analyze, illustrate, and report the findings correctly and will hopefully serve as a gauge for a level of design complexity when it might be time to consult a biostatistician.


Assuntos
Projetos de Pesquisa , Reprodutibilidade dos Testes , Estados Unidos
8.
Biomolecules ; 12(6)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35740870

RESUMO

Nitric oxide (NO) is a potent signaling molecule involved in many physiological and pathophysiological processes in the kidney. NO plays a complex role in glomerular ultrafiltration, vasodilation, and inflammation. Changes in NO bioavailability in pathophysiological conditions such as hypertension or diabetes may lead to podocyte damage, proteinuria, and rapid development of chronic kidney disease (CKD). Despite the extensive data highlighting essential functions of NO in health and pathology, related signaling in glomerular cells, particularly podocytes, is understudied. Several reports indicate that NO bioavailability in glomerular cells is decreased during the development of renal pathology, while restoring NO level can be beneficial for glomerular function. At the same time, the compromised activity of nitric oxide synthase (NOS) may provoke the formation of peroxynitrite and has been linked to autoimmune diseases such as systemic lupus erythematosus. It is known that the changes in the distribution of NO sources due to shifts in NOS subunits expression or modifications of NADPH oxidases activity may be linked to or promote the development of pathology. However, there is a lack of information about the detailed mechanisms describing the production and release of NO in the glomerular cells. The interaction of NO and other reactive oxygen species in podocytes and how NO-calcium crosstalk regulates glomerular cells' function is still largely unknown. Here, we discuss recent reports describing signaling, synthesis, and known pathophysiological mechanisms mediated by the changes in NO homeostasis in the podocyte. The understanding and further investigation of these essential mechanisms in glomerular cells will facilitate the design of novel strategies to prevent or manage health conditions that cause glomerular and kidney damage.


Assuntos
Podócitos , Humanos , Rim/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Óxido Nítrico , Óxido Nítrico Sintase/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Proteinúria/metabolismo
9.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35380994

RESUMO

Atrial natriuretic peptide (ANP), encoded by Nppa, is a vasodilatory hormone that promotes salt excretion. Genome-wide association studies identified Nppa as a causative factor of blood pressure development, and in humans, ANP levels were suggested as an indicator of salt sensitivity. This study aimed to provide insights into the effects of ANP on cardiorenal function in salt-sensitive hypertension. To address this question, hypertension was induced in SSNPPA-/- (KO of Nppa in the Dahl salt-sensitive [SS] rat background) or SSWT (WT Dahl SS) rats by a high-salt (HS) diet challenge (4% NaCl for 21 days). Chronic infusion of ANP in SSWT rats attenuated the increase in blood pressure and cardiorenal damage. Overall, the SSNPPA-/- strain demonstrated higher blood pressure and intensified cardiac fibrosis (with no changes in ejection fraction) compared with SSWT rats. Furthermore, SSNPPA-/- rats exhibited kidney hypertrophy and higher glomerular injury scores, reduced diuresis, and lower sodium and chloride excretion than SSWT when fed a HS diet. Additionally, the activity of epithelial Na+ channel (ENaC) was found to be increased in the collecting ducts of the SSNPPA-/- rats. Taken together, these data show promise for the therapeutic benefits of ANP and ANP-increasing drugs for treating salt-sensitive hypertension.


Assuntos
Fator Natriurético Atrial , Hipertensão , Animais , Fator Natriurético Atrial/genética , Pressão Sanguínea/fisiologia , Estudo de Associação Genômica Ampla , Ratos , Ratos Endogâmicos Dahl , Sódio , Cloreto de Sódio na Dieta/efeitos adversos
10.
Am J Physiol Cell Physiol ; 322(4): C775-C786, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081320

RESUMO

Histamine is an important immunomodulator, as well as a regulator of allergic inflammation, gastric acid secretion, and neurotransmission. Although substantial histamine level has been reported in the kidney, renal pathological and physiological effects of this compound have not been clearly defined. The goal of this study was to provide insight into the role of histamine-related pathways in the kidney, with emphasis on the collecting duct (CD), a distal part of the nephron important for the regulation of blood pressure. We report that all four histamine receptors (HRs) as well as enzymes responsible for histamine metabolism and synthesis are expressed in cultured mouse mpkCCDcl4 cells, and histamine evokes a dose-dependent transient increase in intracellular Ca2+ in these cells. Furthermore, we observed a dose-dependent increase in cAMP in the CD cells in response to histamine. Short-circuit current studies aimed at measuring Na+ reabsorption via ENaC (epithelial Na+ channel) demonstrated inhibition of ENaC-mediated currents by histamine after a 4-h incubation, and single-channel patch-clamp analysis revealed similar ENaC open probability before and after acute histamine application. The long-term (4 h) effect on ENaC was corroborated in immunocytochemistry and qPCR, which showed a decrease in protein and gene expression for αENaC upon histamine treatment. In summary, our data highlight the functional importance of HRs in the CD cells and suggest potential implications of histamine in inflammation-related renal conditions. Further research is required to discern the molecular pathways downstream of HRs and assess the role of specific receptors in renal pathophysiology.


Assuntos
Canais Epiteliais de Sódio , Túbulos Renais Coletores , Animais , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Camundongos , Néfrons/metabolismo , Receptores Histamínicos/genética , Receptores Histamínicos/metabolismo , Sódio/metabolismo
11.
iScience ; 24(6): 102528, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142040

RESUMO

Growing evidence suggests that renal purinergic signaling undergoes significant remodeling during pathophysiological conditions such as diabetes. This study examined the renal P2 receptor profile and ATP-mediated calcium response from podocytes in glomeruli from kidneys with type 1 or type 2 diabetic kidney disease (DKD), using type 2 diabetic nephropathy (T2DN) rats and streptozotocin-injected Dahl salt-sensitive (type 1 diabetes) rats. A dramatic increase in the ATP-mediated intracellular calcium flux in podocytes was observed in both models. Pharmacological inhibition established that P2X4 and P2X7 are the major receptors contributing to the augmented ATP-mediated intracellular calcium signaling in diabetic podocytes. The transition in purinergic receptor composition from metabotropic to ionotropic may disrupt intracellular calcium homeostasis in podocytes resulting in their dysfunction and potentially further aggravating DKD progression.

12.
Physiol Genomics ; 53(6): 223-234, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870721

RESUMO

Diabetic kidney disease (DKD) is a common complication of diabetes, which frequently leads to end-stage renal failure and increases cardiovascular disease risk. Hyperglycemia promotes renal pathologies such as glomerulosclerosis, tubular hypertrophy, microalbuminuria, and a decline in glomerular filtration rate. Importantly, recent clinical data have demonstrated distinct sexual dimorphism in the pathogenesis of DKD in people with diabetes, which impacts both severity- and age-related risk factors. This study aimed to define sexual dimorphism and renal function in a nonobese type 2 diabetes model with the spontaneous development of advanced diabetic nephropathy (T2DN rats). T2DN rats at 12- and over 48-wk old were used to define disease progression and kidney injury development. We found impaired glucose tolerance and glomerular hyperfiltration in T2DN rats to compare with nondiabetic Wistar control. The T2DN rat displays a significant sexual dimorphism in insulin resistance, plasma cholesterol, renal and glomerular injury, urinary nephrin shedding, and albumin handling. Our results indicate that both male and female T2DN rats developed nonobese type 2 DKD phenotype, where the females had significant protection from the development of severe forms of DKD. Our findings provide further evidence for the T2DN rat strain's effectiveness for studying the multiple facets of DKD.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/diagnóstico , Rim/metabolismo , Albuminúria/metabolismo , Animais , Biomarcadores/urina , Diabetes Mellitus Tipo 2/sangue , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Progressão da Doença , Eletrólitos/urina , Feminino , Taxa de Filtração Glomerular , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Rim/patologia , Rim/fisiopatologia , Masculino , Metabolômica/métodos , Ratos Wistar , Fatores Sexuais
13.
Life Sci Alliance ; 3(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046522

RESUMO

Opioid use is associated with predictors of poor cardiorenal outcomes. However, little is known about the direct impact of opioids on podocytes and renal function, especially in the context of hypertension and CKD. We hypothesize that stimulation of opioid receptors (ORs) contributes to dysregulation of intracellular calcium ([Ca2+]i) homeostasis in podocytes, thus aggravating the development of renal damage in hypertensive conditions. Herein, freshly isolated glomeruli from Dahl salt-sensitive (SS) rats and human kidneys, as well as immortalized human podocytes, were used to elucidate the contribution of specific ORs to calcium influx. Stimulation of κ-ORs, but not µ-ORs or δ-ORs, evoked a [Ca2+]i transient in podocytes, potentially through the activation of TRPC6 channels. κ-OR agonist BRL52537 was used to assess the long-term effect in SS rats fed a high-salt diet. Hypertensive rats chronically treated with BRL52537 exhibited [Ca2+]i overload in podocytes, nephrinuria, albuminuria, changes in electrolyte balance, and augmented blood pressure. These data demonstrate that the κ-OR/TRPC6 signaling directly influences podocyte calcium handling, provoking the development of kidney injury in the opioid-treated hypertensive cohort.


Assuntos
Analgésicos Opioides/metabolismo , Rim/patologia , Podócitos/metabolismo , Analgésicos Opioides/farmacologia , Animais , Cálcio/metabolismo , Humanos , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Masculino , Piperidinas/farmacologia , Pirrolidinas/farmacologia , Ratos , Ratos Endogâmicos Dahl , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/metabolismo
14.
Am J Physiol Renal Physiol ; 318(5): F1252-F1257, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32223309

RESUMO

Recently, research has redirected its interests in uric acid (UA) from gout, an inflammatory disease in joints, to groups of closely interrelated pathologies associated with cardiovascular and kidney dysfunction. Many epidemiological, clinical, and experimental studies have shown that UA may play a role in the pathophysiology of the cardiorenal syndrome continuum; however, it is still unclear if it is a risk factor or a causal role. Hyperuricemia has been well studied in the past two decades, revealing mechanistic insights into UA homeostasis. Likewise, some epidemiological and experimental evidence suggests that hypouricemia can lead to cardiorenal pathologies. The goal of this review is to highlight why studying both hyperuricemia and hypouricemia is warranted as well as to summarize the relevance of UA to kidney function.


Assuntos
Hiperuricemia/sangue , Nefropatias/sangue , Rim/metabolismo , Ácido Úrico/sangue , Animais , Biomarcadores/sangue , Homeostase , Humanos , Hiperuricemia/epidemiologia , Hiperuricemia/fisiopatologia , Rim/fisiopatologia , Nefropatias/epidemiologia , Nefropatias/fisiopatologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...