Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Clin Microbiol ; 58(11)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32907992

RESUMO

The role of mutations in genes associated with phenotypic resistance to bedaquiline (BDQ) and delamanid (DLM) in Mycobacterium tuberculosis complex (MTBc) strains is poorly characterized. A clear understanding of the genetic variants' role is crucial to guide the development of molecular-based drug susceptibility testing (DST). In this work, we analyzed all mutations in candidate genomic regions associated with BDQ- and DLM-resistant phenotypes using a whole-genome sequencing (WGS) data set from a collection of 4,795 MTBc clinical isolates from six countries with a high burden of tuberculosis (TB). From WGS analysis, we identified 61 and 163 unique mutations in genomic regions potentially involved in BDQ- and DLM-resistant phenotypes, respectively. Importantly, all strains were isolated from patients who likely have never been exposed to these medicines. To characterize the role of mutations, we calculated the free energy variation upon mutations in the available protein structures of Ddn (DLM), Fgd1 (DLM), and Rv0678 (BDQ) and performed MIC assays on a subset of MTBc strains carrying mutations to assess their phenotypic effect. The combination of structural and phenotypic data allowed for cataloguing the mutations clearly associated with resistance to BDQ (n = 4) and DLM (n = 35), only two of which were previously described, as well as about a hundred genetic variants without any correlation with resistance. Significantly, these results show that both BDQ and DLM resistance-related mutations are diverse and distributed across the entire region of each gene target, which is of critical importance for the development of comprehensive molecular diagnostic tools.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Genômica , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Nitroimidazóis , Oxazóis , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
2.
Sci Rep ; 6: 28436, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27341528

RESUMO

AurkA overexpression was previously found in breast cancer and associated to its ability in controlling chromosome segregation during mitosis, however whether it may affect breast cancer cells, endorsed with stem properties (BCICs), is still unclear. Surprisingly, a strong correlation between AurkA expression and ß-catenin localization in breast cancer tissues suggested a link between AurkA and Wnt signaling. In our study, AurkA knock-down reduced wnt3a mRNA and suppressed metastatic signature of MDA-MB-231 cells. As a consequence, the amount of BCICs and their migratory capability dramatically decreased. Conversely, wnt3a mRNA stabilization and increased CD44(+)/CD24(low/-) subpopulation was found in AurkA-overexpressing MCF7 cells. In vivo, AurkA-overexpressing primary breast cancer cells showed higher tumorigenic properties. Interestingly, we found that AurkA suppressed the expression of miR-128, inhibitor of wnt3a mRNA stabilization. Namely, miR-128 suppression realized after AurkA binding to Snail. Remarkably, a strong correlation between AurkA and miR-128 expression in breast cancer tissues confirmed our findings. This study provides novel insights into an undisclosed role for the kinase AurkA in self-renewal and migration of BCICs affecting response to cancer therapies, metastatic spread and recurrence. In addition, it suggests a new therapeutic strategy taking advantage of miR-128 to suppress AurkA-Wnt3a signaling.


Assuntos
Aurora Quinase A/fisiologia , Neoplasias da Mama/enzimologia , MicroRNAs/genética , Células-Tronco Neoplásicas/fisiologia , Proteína Wnt3A/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Neoplasias da Mama/patologia , Autorrenovação Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Camundongos , MicroRNAs/metabolismo , Transplante de Neoplasias , Estabilidade Proteica , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...