Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Blood ; 139(18): 2797-2815, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35286385

RESUMO

Myeloproliferative neoplasms (MPNs) transform to myelofibrosis (MF) and highly lethal acute myeloid leukemia (AML), although the actionable mechanisms driving progression remain elusive. Here, we elucidate the role of the high mobility group A1 (HMGA1) chromatin regulator as a novel driver of MPN progression. HMGA1 is upregulated in MPN, with highest levels after transformation to MF or AML. To define HMGA1 function, we disrupted gene expression via CRISPR/Cas9, short hairpin RNA, or genetic deletion in MPN models. HMGA1 depletion in JAK2V617F AML cell lines disrupts proliferation, clonogenicity, and leukemic engraftment. Surprisingly, loss of just a single Hmga1 allele prevents progression to MF in JAK2V617F mice, decreasing erythrocytosis, thrombocytosis, megakaryocyte hyperplasia, and expansion of stem and progenitors, while preventing splenomegaly and fibrosis within the spleen and BM. RNA-sequencing and chromatin immunoprecipitation sequencing revealed HMGA1 transcriptional networks and chromatin occupancy at genes that govern proliferation (E2F, G2M, mitotic spindle) and cell fate, including the GATA2 master regulatory gene. Silencing GATA2 recapitulates most phenotypes observed with HMGA1 depletion, whereas GATA2 re-expression partially rescues leukemogenesis. HMGA1 transactivates GATA2 through sequences near the developmental enhancer (+9.5), increasing chromatin accessibility and recruiting active histone marks. Further, HMGA1 transcriptional networks, including proliferation pathways and GATA2, are activated in human MF and MPN leukemic transformation. Importantly, HMGA1 depletion enhances responses to the JAK2 inhibitor, ruxolitinib, preventing MF and prolonging survival in murine models of JAK2V617F AML. These findings illuminate HMGA1 as a key epigenetic switch involved in MPN transformation and a promising therapeutic target to treat or prevent disease progression.


Assuntos
Fator de Transcrição GATA2 , Proteína HMGA1a , Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Mielofibrose Primária , Animais , Proliferação de Células , Cromatina/genética , Fator de Transcrição GATA2/genética , Redes Reguladoras de Genes , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/genética , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Mielofibrose Primária/genética
2.
3.
Best Pract Res Clin Haematol ; 34(4): 101330, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865702

RESUMO

The myeloproliferative neoplasms (MPN), polycythemia vera (PV), essential thrombocytosis and primary myelofibrosis, are an unusual group of myeloid neoplasms, which arise in a pluripotent hematopoietic stem cell (HSC) due to gain of function driver mutations in the JAK2, CALR and MPL genes that constitutively activate JAK2, the cognate tyrosine kinase of the type 1 hematopoietic growth factor (HGF) receptors. PV is the ultimate phenotypic expression of constitutive JAK2 activation since it alone of the three MPN is characterized by overproduction of normal red cells, white cells and platelets. Paradoxically, however, although PV is a panmyelopathy involving myeloid, erythroid and megakaryocytic progenitor cells, pluripotent HSC only express a single type of HGF receptor, the thrombopoietin receptor, MPL. In this review, the basis for how a pluripotent HSC with one type of HGF can give rise to three separate types of myeloid cells will be explained and it will be demonstrated that PV is actually a hormone-sensitive disorder, characterized by elevated thrombopoietin levels. Finally, it will be shown that the most common form of acute leukemia in PV is due to the inappropriate use of chemotherapy, including hydroxyurea, which facilitates expansion of DNA-damaged, mutated HSC at the expense of their normal counterparts.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Trombocitemia Essencial , Calreticulina/genética , Humanos , Janus Quinase 2/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutação , Policitemia Vera/genética
5.
Front Oncol ; 11: 641613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777803

RESUMO

The myeloproliferative neoplasms, polycythemia vera, essential thrombocytosis and primary myelofibrosis share driver mutations that either activate the thrombopoietin receptor, MPL, or indirectly activate it through mutations in the gene for JAK2, its cognate tyrosine kinase. Paradoxically, although the myeloproliferative neoplasms are classified as neoplasms because they are clonal hematopoietic stem cell disorders, the mutations affecting MPL or JAK2 are gain-of-function, resulting in increased production of normal erythrocytes, myeloid cells and platelets. Constitutive JAK2 activation provides the basis for the shared clinical features of the myeloproliferative neoplasms. A second molecular abnormality, impaired posttranslational processing of MPL is also shared by these disorders but has not received the recognition it deserves. This abnormality is important because MPL is the only hematopoietic growth factor receptor expressed in hematopoietic stem cells; because MPL is a proto-oncogene; because impaired MPL processing results in chronic elevation of plasma thrombopoietin, and since these diseases involve normal hematopoietic stem cells, they have proven resistant to therapies used in other myeloid neoplasms. We hypothesize that MPL offers a selective therapeutic target in the myeloproliferative neoplasms since impaired MPL processing is unique to the involved stem cells, while MPL is required for hematopoietic stem cell survival and quiescent in their bone marrow niches. In this review, we will discuss myeloproliferative neoplasm hematopoietic stem cell pathophysiology in the context of the behavior of MPL and its ligand thrombopoietin and the ability of thrombopoietin gene deletion to abrogate the disease phenotype in vivo in a JAK2 V617 transgenic mouse model of PV.

6.
PLoS One ; 15(6): e0232801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479500

RESUMO

The myeloproliferative neoplasms, polycythemia vera, essential thrombocytosis and primary myelofibrosis are hematopoietic stem cell disorders and share driver mutations that either directly activate the thrombopoietin receptor, MPL, or activate it indirectly through gain-of-function mutations in the gene for JAK2, its cognate tyrosine kinase. Paradoxically, MPL surface expression in hematopoietic stem cells is also reduced in the myeloproliferative neoplasms due to abnormal post-translational glycosylation and premature destruction of JAK2, suggesting that the myeloproliferative neoplasms are disorders of MPL processing since MPL is the only hematopoietic growth factor receptor in hematopoietic stem cells. To examine this possibility, we genetically manipulated MPL expression and maturation in a JAK2V617F transgenic mouse model of polycythemia vera. Elimination of MPL expression completely abrogated the polycythemia vera phenotype in this JAK2V617F transgenic mouse model, which could only be partially restored by expression of one MPL allele. Most importantly, elimination of thrombopoietin gene expression abrogated the polycythemia vera phenotype in this JAK2V617F transgenic mouse model, which could be completely restored by expression of a single thrombopoietin allele. These data indicate that polycythemia vera is in part a thrombopoietin-dependent disorder and that targeting the MPL-thrombopoietin axis could be an effective, nonmyelotoxic therapeutic strategy in this disorder.


Assuntos
Janus Quinase 2/genética , Policitemia Vera/genética , Policitemia Vera/metabolismo , Trombopoetina/genética , Trombopoetina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Transtornos Mieloproliferativos/genética , Fenótipo , Policitemia Vera/patologia , Mielofibrose Primária/genética , Receptores de Trombopoetina/genética , Trombocitemia Essencial/genética
8.
Blood ; 133(25): 2630-2631, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221790

Assuntos
Calreticulina
9.
Blood ; 134(4): 341-352, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31151982

RESUMO

Since its discovery, polycythemia vera (PV) has challenged clinicians responsible for its diagnosis and management and scientists investigating its pathogenesis. As a clonal hematopoietic stem cell (HSC) disorder, PV is a neoplasm but its driver mutations result in overproduction of morphologically and functionally normal blood cells. PV arises in an HSC but it can present initially as isolated erythrocytosis, leukocytosis, thrombocytosis, or any combination of these together with splenomegaly or myelofibrosis, and it can take years for a true panmyelopathy to appear. PV shares the same JAK2 mutation as essential thrombocytosis and primary myelofibrosis, but erythrocytosis only occurs in PV. However, unlike secondary causes of erythrocytosis, in PV, the plasma volume is frequently expanded, masking the erythrocytosis and making diagnosis difficult if this essential fact is ignored. PV is not a monolithic disorder: female patients deregulate fewer genes and clinically behave differently than their male counterparts, while some PV patients are genetically predisposed to an aggressive clinical course. Nevertheless, based on what we have learned over the past century, most PV patients can lead long and productive lives. In this review, using clinical examples, I describe how I diagnose and manage PV in an evidence-based manner without relying on chemotherapy.


Assuntos
Policitemia Vera/diagnóstico , Policitemia Vera/terapia , Adulto , Idoso de 80 Anos ou mais , Biomarcadores , Terapia Combinada/métodos , Gerenciamento Clínico , Suscetibilidade a Doenças , Medicina Baseada em Evidências , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Policitemia Vera/etiologia , Policitemia Vera/metabolismo , Resultado do Tratamento
10.
Curr Treat Options Oncol ; 19(2): 12, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516275

RESUMO

OPINION STATEMENT: Polycythemia vera (PV) is the most common myeloproliferative neoplasm (MPN), the ultimate phenotype of the JAK2 V1617F mutation, the MPN with the highest incidence of thromboembolic complications, which usually occur early in the course of the disease, and the only MPN in which erythrocytosis occurs. The classical presentation of PV is characterized by erythrocytosis, leukocytosis, and thrombocytosis, often with splenomegaly and occasionally with myelofibrosis, but it can also present as isolated erythrocytosis with or without splenomegaly, isolated thrombocytosis or isolated leukocytosis, or any combination of these. When PV is present, the peripheral blood hematocrit (or hemoglobin) determination will not accurately represent the actual volume of red cells in the body, because in PV, in contrast to other disorders causing erythrocytosis, when the red cell mass increases, the plasma volume usually increases. In fact, unless the hematocrit is greater than 59%, true erythrocytosis cannot be distinguished from pseudoerythrocytosis due to plasma volume contraction. Usually, the presence of splenomegaly or leukocytosis or thrombocytosis establishes the diagnosis. However, when a patient presents with isolated thrombocytosis and a positive JAK2 V617F assay, particularly a young woman, the possibility of PV must always be considered because of plasma volume expansion. The WHO PV diagnostic guidelines are not helpful in this situation, since the hematocrit is invariably normal and a bone marrow examination will not distinguish ET from PV. Only a direct measurement of both the red cell mass and plasma volume can establish the correct diagnosis. In managing a PV patient, it is important to remember that PV is an indolent disorder in which life span is usually measured in decades, even when myelofibrosis is present, that chemotherapy is futile in eradicating the disease but does increase the incidence of acute leukemia and that hydroxyurea is not safe in this regard nor is it antithrombotic. Phlebotomy to a sex-specific normal hematocrit is the cornerstone of therapy and there now exist safe remedies for controlling leukocytosis, thrombocytosis, and extramedullary hematopoiesis and symptoms due to inflammatory cytokines when this is necessary.


Assuntos
Leucocitose/complicações , Policitemia Vera/etiologia , Policitemia/complicações , Esplenomegalia/complicações , Trombocitose/complicações , Tromboembolia/complicações , Hematócrito , Humanos , Janus Quinase 2/genética , Policitemia Vera/genética , Policitemia Vera/fisiopatologia
11.
N Engl J Med ; 377(9): 895-6, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28854086
13.
Am J Hematol ; 92(9): 909-914, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28543980

RESUMO

BCR-ABL1-negative myeloproliferative neoplasms (MPNs) are clonal stem cell disorders defined by proliferation of one or more myeloid lineages, and carry an increased risk of vascular events and progression to myelofibrosis and leukemia. Portal hypertension (pHTN) occurs in 7-18% of MPN patients via both thrombotic and nonthrombotic mechanisms and portends a poor prognosis. Transjugular intrahepatic portosystemic shunt (TIPS) has been used in the management of MPN-associated pHTN; however, data on long-term outcomes of TIPS in this setting is limited and the optimal management of medically refractory MPN-associated pHTN is not known. In order to assess the efficacy and long-term outcomes of TIPS in MPN-associated pHTN, we performed a retrospective analysis of 29 MPN patients who underwent TIPS at three academic medical centers between 1997 and 2016. The majority of patients experienced complete clinical resolution of pHTN and its clinical sequelae following TIPS. One, two, three, and four-year overall survival post-TIPS was 96.4%, 92.3%, 84.6%, and 71.4%, respectively. However, despite therapeutic anticoagulation, in-stent thrombosis occurred in 31.0% of patients after TIPS, necessitating additional interventions. In conclusion, TIPS can be an effective intervention for MPN-associated pHTN regardless of etiology. However, TIPS thrombosis is a frequent complication in the MPN population and indefinite anticoagulation post-TIPS should be considered.


Assuntos
Proteínas de Fusão bcr-abl , Hipertensão Portal , Transtornos Mieloproliferativos , Derivação Portossistêmica Transjugular Intra-Hepática , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Humanos , Hipertensão Portal/etiologia , Hipertensão Portal/mortalidade , Hipertensão Portal/cirurgia , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/mortalidade , Transtornos Mieloproliferativos/cirurgia , Estudos Retrospectivos , Taxa de Sobrevida , Fatores de Tempo
15.
J Natl Compr Canc Netw ; 14(10): 1238-1245, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27697978

RESUMO

Polycythemia vera (PV) is an acquired clonal hematopoietic stem cell disorder characterized by an overproduction of red blood cells, white blood cells, and platelets; thrombotic and hemorrhagic complications; and an increased risk of transformation to myelofibrosis and acute leukemia. In 1967, the Polycythemia Vera Study Group proposed the optimal approach to diagnosis and treatment of PV, and in 2002, investigators from Johns Hopkins University School of Medicine surveyed the practice patterns of hematologists as they pertained to PV. Since this survey, the JAK2 V617F mutation was discovered, leading to a new era of discovery in the disease pathogenesis, diagnosis, and classification and treatment of PV. Our objective was to survey hematologists in the diagnosis and treatment of PV in the modern, post-JAK2 V617F discovery era. An anonymous 17-question survey was emailed to members of the Myeloproliferative Neoplasm (MPN) Research Foundation database and Aplastic Anemia and MDS International Foundation. A total of 71 surveys were used in the analysis. Diagnostic testing varied according to the respondent's clinical experience and practice type. In addition, there were marked differences in target hematocrit and platelet count among those surveyed. There continue to be variations in diagnosis and treatment of PV despite WHO guidelines and the JAK2 discovery. US-based guidelines for MPNs are needed to create consistency in the management of PV and other MPNs.


Assuntos
Janus Quinase 2/genética , Policitemia Vera/diagnóstico , Policitemia Vera/terapia , Idoso , Humanos , Pessoa de Meia-Idade
17.
N Engl J Med ; 371(9): 808-17, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25162887

RESUMO

BACKGROUND: Polycythemia vera is the ultimate phenotypic consequence of the V617F mutation in Janus kinase 2 (encoded by JAK2), but the extent to which this mutation influences the behavior of the involved CD34+ hematopoietic stem cells is unknown. METHODS: We analyzed gene expression in CD34+ peripheral-blood cells from 19 patients with polycythemia vera, using oligonucleotide microarray technology after correcting for potential confounding by sex, since the phenotypic features of the disease differ between men and women. RESULTS: Men with polycythemia vera had twice as many up-regulated or down-regulated genes as women with polycythemia vera, in a comparison of gene expression in the patients and in healthy persons of the same sex, but there were 102 genes with differential regulation that was concordant in men and women. When these genes were used for class discovery by means of unsupervised hierarchical clustering, the 19 patients could be divided into two groups that did not differ significantly with respect to age, neutrophil JAK2 V617F allele burden, white-cell count, platelet count, or clonal dominance. However, they did differ significantly with respect to disease duration; hemoglobin level; frequency of thromboembolic events, palpable splenomegaly, and splenectomy; chemotherapy exposure; leukemic transformation; and survival. The unsupervised clustering was confirmed by a supervised approach with the use of a top-scoring-pair classifier that segregated the 19 patients into the same two phenotypic groups with 100% accuracy. CONCLUSIONS: Removing sex as a potential confounder, we identified an accurate molecular method for classifying patients with polycythemia vera according to disease behavior, independently of their JAK2 V617F allele burden, and identified previously unrecognized molecular pathways in polycythemia vera outside the canonical JAK2 pathway that may be amenable to targeted therapy. (Funded by the Department of Defense and the National Institutes of Health.).


Assuntos
Expressão Gênica , Janus Quinase 2/genética , Fenótipo , Policitemia Vera/genética , Idoso , Idoso de 80 Anos ou mais , Antígenos CD34 , Contagem de Células Sanguíneas , Fatores de Confusão Epidemiológicos , Feminino , Regulação da Expressão Gênica , Humanos , Janus Quinase 2/metabolismo , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Policitemia Vera/classificação , Policitemia Vera/metabolismo , Fatores Sexuais
18.
Stem Cells ; 32(1): 269-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105986

RESUMO

Disease-specific induced pluripotent stem cells (iPSCs) provide an unprecedented opportunity to establish novel disease models and accelerate drug development using distinct tissue target cells generated from isogenic iPSC lines with and without disease-causing mutations. To realize the potential of iPSCs in modeling acquired diseases which are usually heterogeneous, we have generated multiple iPSC lines including two lines that are JAK2-wild-type and four lines homozygous for JAK2-V617F somatic mutation from a single polycythemia vera (PV) patient blood. In vitro differentiation of the same patient-derived iPSC lines have demonstrated the differential contributions of their parental hematopoietic clones to the abnormal erythropoiesis including the formation of endogenous erythroid colonies. This iPSC approach thus may provide unique and valuable insights into the genetic events responsible for disease development. To examine the potential of iPSCs in drug testing, we generated isogenic hematopoietic progenitors and erythroblasts from the same iPSC lines derived from PV patients and normal donors. Their response to three clinical JAK inhibitors, INCB018424 (Ruxolitinib), TG101348 (SAR302503), and the more recent CYT387 was evaluated. All three drugs similarly inhibited erythropoiesis from normal and PV iPSC lines containing the wild-type JAK2 genotype, as well as those containing a homozygous or heterozygous JAK2-V617F activating mutation that showed increased erythropoiesis without a JAK inhibitor. However, the JAK inhibitors had less inhibitory effect on the self-renewal of CD34+ hematopoietic progenitors. The iPSC-mediated disease modeling thus underlies the ineffectiveness of the current JAK inhibitors and provides a modeling system to develop better targeted therapies for the JAK2 mutated hematopoiesis.


Assuntos
Eritroblastos/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Diferenciação Celular/efeitos dos fármacos , Eritroblastos/enzimologia , Eritropoese/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/enzimologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Janus Quinase 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...