Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38004816

RESUMO

Cyclosporiasis, caused by the coccidian parasite Cyclospora cayetanensis, has emerged as an increasing global public health concern, with the incidence of laboratory-confirmed domestically acquired cases in the US exceeding 10,000 since 2018. A recently published qPCR assay (Mit1C) based on a mitochondrial target gene showed high specificity and good sensitivity for the detection of C. cayetanensis in fresh produce. The present study shows the integration and verification of the same mitochondrial target into a fully automated and streamlined platform that performs DNA isolation, PCR, hybridization, results visualization, and reporting of results to simplify and reduce hands-on time for the detection of this parasite. By using the same primer sets for both the target of interest (i.e., Mit1C) and the internal assay control (IAC), we were able to rapidly migrate the previously developed Mit1C qPCR assay into the more streamlined and automated format Rheonix C. cayetanensisTM Assay. Once the best conditions for detection were optimized and the migration to the fully automated format was completed, we compared the performance of the automated platform against the original "bench top" Mit1C qPCR assay. The automated Rheonix C. cayetanensis Assay achieved equivalent performance characteristics as the original assay, including the same performance for both inclusion and exclusion panels, and it was able to detect as low as 5 C. cayetanensis oocysts in fresh produce while significantly reducing hands-on time. We expect that the streamlined assay can be used as a tool for outbreak and/or surveillance activities to detect the presence of C. cayetanensis in produce samples.

2.
Arch Pathol Lab Med ; 139(6): 805-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26030250

RESUMO

CONTEXT: Although the value of pharmacogenomics to improve patient outcomes has become increasingly clear, adoption in medical practice has been slow, which can be attributed to several factors, including complicated and expensive testing procedures and required equipment, lack of training by private practice physicians, and reluctance of both private and commercial payers to reimburse for such testing. OBJECTIVES: To evaluate a fully automated molecular detection system for human genotyping assays, starting with anticoagulated whole blood samples, and to perform all sample preparation, assay, and analysis steps automatically with actionable results reported by the system's software. DESIGN: The genotypes of 254 random individuals were determined by performing bidirectional DNA sequencing, and that information was used to statistically train the imaging software of the automated molecular detection system to distinguish the 3 possible genotypes (ie, homozygous wild type, heterozygous, and homozygous mutant) at each of 3 different loci (CYP2C9*2, CYP2C9*3, and VKORC1). RESULTS: The resulting software algorithm was able to correctly identify the genotypes of all 254 individuals (100%) evaluated without any further user analysis. CONCLUSIONS: The EncompassMDx workstation (Rheonix, Inc, Ithaca, New York) is a molecular detection system that can automatically determine the genotypes of individuals in an unattended manner. Considerably less technical expertise was required to achieve results identical to those obtained using more complex, time-consuming, and expensive bidirectional DNA sequencing. This optimized system may dramatically simplify and reduce the costs of pharmacogenomics testing, thus leading to more-widespread use.


Assuntos
Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Citocromo P-450 CYP2C9/genética , Genótipo , Humanos , Isoenzimas/genética , Reprodutibilidade dos Testes , Software , Vitamina K Epóxido Redutases/genética
3.
Point Care ; 11(1): 42-51, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22754401

RESUMO

A versatile microfluidic platform for the evolving molecular diagnostics industry is described. It incorporates low cost Rheonix CARD(®) (Chemistry and Reagent Device) technology to analyze a variety of clinical specimens. A patented lamination process incorporates all pumps, valves, microchannels and reaction compartments into an inexpensive disposable plastic device. Once an untreated clinical specimen is introduced, all assay steps, including cell lysis, nucleic acid purification, multiplex PCR, and end-point analysis, are automatically performed. Three distinct CARD assays are described which utilize either a low density microarray for multiplex detection of amplicons or an integrated primer extension assay to detect single nucleotide polymorphisms of interest. The STI (Sexually Transmitted Infections) CARD(®) is able to simultaneously detect four sexually transmitted infectious agents (N. gonorrhoeae, C.trachomatis, T. pallidum and T. vaginalis). Human C33A cervical epithelial cells were spiked with different levels of genomic DNA from the four species of interest, singly or in combination, and applied to the CARD device. Using multiplex PCR amplification of the targets followed by microarray detection, the CARD device was able to correctly detect a minimum of 10 copies of each of the four pathogens. The HPV (Human Papillomavirus) CARD(®) was able to detect and distinguish 20 different clinically relevant HPV types using cloned HPV DNA. In addition, the HPV CARD could identify HPV types in vaginal specimens previously demonstrated to contain high or low risk HPV using a currently commercially available testing method. Finally, the detection of specific single nucleotide polymorphisms (SNP) associated with warfarin dosing sensitivity was achieved on the Warfarin Genotyping CARD(®) by analyzing human buccal swabs. Once multiplex PCR was completed, the SNPs were detected using a primer extension assay.

4.
Am J Physiol Cell Physiol ; 295(1): C279-87, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18495813

RESUMO

Ca(+)-activated Cl(-) channel (CLCA) proteins are encoded by a family of highly related and clustered genes in mammals that are markedly upregulated in inflammation and have been shown to affect chloride transport. Here we describe the cellular processing and regulatory sequences underlying murine (m) CLCA4 proteins. The 125-kDa mCLCA4 gene product is cleaved to 90- and 40-kDa fragments, and the NH(2)- and COOH-terminal fragments are secreted, where they are found in cell media and associated with the plasma membrane. The 125-kDa full-length protein is only found in the endoplasmic reticulum (ER), and specific luminal diarginine retention and dileucine forward trafficking signals contained within the CLCA4 sequence regulate export from the ER and proteolytic processing. Mutation of the dileucine luminal sequences resulted in ER trapping of the immaturely glycosylated 125-kDa peptide, indicating that proteolytic cleavage occurs following recognition of the trafficking motifs. Moreover, the mutated dileucine and diarginine signal sequences directed processing of a secreted form of enhanced green fluorescent protein in a manner consistent with the effects on mCLCA4.


Assuntos
Canais de Cloreto/metabolismo , Retículo Endoplasmático/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Canais de Cloreto/genética , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Fosforilação , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...