Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(23)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067143

RESUMO

Despite advances in chemotherapeutic drugs used against cervical cancer, available chemotherapy treatments adversely affect the patient's quality of life. For this reason, new molecules from natural sources with antitumor potential and few side effects are required. In previous research, Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, has shown selective attack against the HeLa and Ca Ski cervical cancer cell lines. This work suggests that the cytotoxic effect generated by Pllans-II on HeLa cells is triggered without affecting the integrity of the cytoplasmic membrane or depolarizing the mitochondrial membranes. The results allow us to establish that cell death in HeLa is related to the junction blockage between α5ß1 integrins and fibronectin of the extracellular matrix. Pllans-II reduces the cells' ability of adhesion and affects survival and proliferation pathways mediated by intracellular communication with the external environment. Our findings confirmed Pllans-II as a potential prototype for developing a selective chemotherapeutic drug against cervical cancer.


Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Adesão Celular , Células HeLa , Qualidade de Vida , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Integrina alfa5beta1
2.
Expert Rev Proteomics ; 20(4-6): 93-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37219402

RESUMO

INTRODUCTION: Intrinsically disordered proteins (IDPs) represent a family of proteins that lack secondary or tertiary structure. IDPs are hubs in interaction networks, participate in liquid-liquid phase separation processes, and drive the formation of proteinaceous membrane-less organelles. Their unfolded structure makes them particularly prone to post-translational modifications (PTMs) that play key functional modulatory roles. AREAS COVERED: We discuss different analytical approaches to study phosphorylation of IDPs starting from methods for IDP enrichment (strong acid extractions and heat-based pre-fractionation), strategies to enrich and map phosphopeptides/proteins, and mass spectrometry-based tools to study the phosphorylation-dependent conformational alterations of IDPs (limited proteolysis, HDX, chemical cross-linking, covalent labeling, and ion mobility). EXPERT OPINION: There is a growing interest in IDPs and their PTMs since they are involved in several diseases. The intrinsic disorder could be exploited to facilitate purification and synthetic production of IDPs taking full advantage of those structural mass-spectrometry-based methods that can be used to investigate IDPs and their phospho-dependent conformational alterations. The diffusion and implementation of mass spectrometers with ion mobility devices and electron transfer dissociation capabilities could be key-elements for increasing information on IDP biology.


Assuntos
Proteínas Intrinsicamente Desordenadas , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosforilação , Proteômica , Processamento de Proteína Pós-Traducional , Espectrometria de Massas , Conformação Proteica
3.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203663

RESUMO

Previously, we demonstrated that the 177Lu-labeled single-chain variable fragment of an anti-prostate-specific membrane antigen (PSMA) IgG D2B antibody (scFvD2B) showed higher prostate cancer (PCa) cell uptake and tumor radiation doses compared to 177Lu-labeled Glu-ureide-based PSMA inhibitory peptides. To obtain a 99mTc-/177Lu-scFvD2B theranostic pair, this research aimed to synthesize and biochemically characterize a novel 99mTc-scFvD2B radiotracer. The scFvD2B-Tag and scFvD2B antibody fragments were produced and purified. Then, two HYNIC derivatives, HYNIC-Gly-Gly-Cys-NH2 (HYNIC-GGC) and succinimidyl-HYNIC (S-HYNIC), were used to conjugate the scFvD2B-Tag and scFvD2B isoforms, respectively. Subsequently, chemical characterization, immunoreactivity tests (affinity and specificity), radiochemical purity tests, stability tests in human serum, cellular uptake and internalization in LNCaP(+), PC3-PIP(++) or PC3(-) PCa cells of the resulting unlabeled HYNIC-scFvD2B conjugates (HscFv) and 99mTc-HscFv agents were performed. The results showed that incorporating HYNIC as a chelator did not affect the affinity, specificity or stability of scFvD2B. After purification, the radiochemical purity of 99mTc-HscFv radiotracers was greater than 95%. A two-sample t-test of 99mTc-HscFv1 and 99mTc-HscFv1 uptake in PC3-PIP vs. PC3 showed a p-value < 0.001, indicating that the PSMA receptor interaction of 99mTc-HscFv agents was statistically significantly higher in PSMA-positive cells than in the negative controls. In conclusion, the results of this research warrant further preclinical studies to determine whether the in vivo pharmacokinetics and tumor uptake of 99mTc-HscFv still offer sufficient advantages over HYNIC-conjugated peptides to be considered for SPECT/PSMA imaging.


Assuntos
Neoplasias da Próstata , Compostos Radiofarmacêuticos , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Anticorpos , Fragmentos de Imunoglobulinas
4.
Protein Sci ; 31(7): e4356, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762714

RESUMO

Parkinson's disease (PD) is a chronic multifactorial disease, whose etiology is not completely understood. The amyloid aggregation of α-synuclein (Syn) is considered a major cause in the development of the disease. The presence of genetic mutations can boost the aggregation of the protein and the likelihood to develop PD. These mutations can lead to early onset (A30P, E46K, and A53T) or late-onset (H50Q) forms of PD. The disease is also linked to an increase in oxidative stress and altered levels of dopamine metabolites. The molecular interaction of these molecules with Syn has been previously studied, while their effect on the pathological mutant structure and function is not completely clarified. By using biochemical and biophysical approaches, here we have studied the interaction of the familial variant E46K with two dopamine-derived catechols, 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylethanol. We show that the presence of these catechols causes a decrease in the formation of amyloid fibrils in a dose-dependent manner. Native- and Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) provide evidence that this effect is strongly conformation dependent. Indeed, these molecules interact differently with the interconverting conformers of Syn and its familial variant E46K in solution, selecting the most prone-to-aggregation one, confining it into an off-pathway oligomer. These findings suggest that catechols could be a molecular scaffold for the design of compounds potentially useful in the treatment of Parkinson's disease and related conditions.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Ácido 3,4-Di-Hidroxifenilacético , Catecóis , Dopamina , Humanos , Doença de Parkinson/genética , Álcool Feniletílico/análogos & derivados , alfa-Sinucleína/genética
5.
Mol Pharm ; 19(3): 876-894, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35188772

RESUMO

The incorporation of bioactive molecules into a water-soluble [99mTc][Tc(N)(PNP)]-based mixed compound is described. The method, which exploits the chemical properties of the new [99mTc][Tc(N)(PNP3OH)]2+ synthon [PNP3OH = N,N-bis(di-hydroxymethylenphosphinoethyl)methoxyethylamine], was successfully applied to the labeling of small, medium (cysteine-functionalized biotin and c-RGDfK pentapeptide), and large molecules. Apomyoglobin was chosen as a model protein and derivatized via site-specific enzymatic reaction catalyzed by transglutaminase (TGase) with the H-Cys-Gly-Lys-Gly-OH tetrapeptide for the insertion in the protein sequence of a reactive N-terminal Cys for 99mTc chelation. Radiosyntheses were performed under physiological conditions at room temperature within 30 min. They were reproducible, highly specific, and quantitative. Heteroleptic complexes are hydrophilic and stable. Biodistributions of the selected compounds show favorable pharmacokinetics within 60 min post-injection and predominant elimination through the renal-urinary pathway. In a wider perspective, these data suggest a role of the [99mTc][Tc(N)(PNP)] technology in the labeling of temperature-sensitive biomolecules, especially targeting proteins for SPECT imaging.


Assuntos
Tecnécio , Água , Cisteína/química , Compostos de Organotecnécio/química , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/química , Temperatura , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
6.
Nucleic Acids Res ; 50(3): 1370-1381, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35100428

RESUMO

G-quadruplex (G4) structures that can form at guanine-rich genomic sites, including telomeres and gene promoters, are actively involved in genome maintenance, replication, and transcription, through finely tuned interactions with protein networks. In the present study, we identified the intermediate filament protein Vimentin as a binder with nanomolar affinity for those G-rich sequences that give rise to at least two adjacent G4 units, named G4 repeats. This interaction is supported by the N-terminal domains of soluble Vimentin tetramers. The selectivity of Vimentin for G4 repeats versus individual G4s provides an unprecedented result. Based on GO enrichment analysis performed on genes having putative G4 repeats within their core promoters, we suggest that Vimentin recruitment at these sites may contribute to the regulation of gene expression during cell development and migration, possibly by reshaping the local higher-order genome topology, as already reported for lamin B.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Telômero/metabolismo , Vimentina/metabolismo , Guanina/química , Filamentos Intermediários
7.
Molecules ; 26(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201280

RESUMO

Site-specific conjugation of proteins is currently required to produce homogenous derivatives for medicine applications. Proteins derivatized at specific positions of the polypeptide chain can actually show higher stability, superior pharmacokinetics, and activity in vivo, as compared with conjugates modified at heterogeneous sites. Moreover, they can be better characterized regarding the composition of the derivatization sites as well as the conformational and activity properties. To this aim, several site-specific derivatization approaches have been developed. Among these, enzymes are powerful tools that efficiently allow the generation of homogenous protein-drug conjugates under physiological conditions, thus preserving their native structure and activity. This review will summarize the progress made over the last decade on the use of enzymatic-based methodologies for the production of site-specific labeled immunoconjugates of interest for nuclear medicine. Enzymes used in this field, including microbial transglutaminase, sortase, galactosyltransferase, and lipoic acid ligase, will be overviewed and their recent applications in the radiopharmaceutical field will be described. Since nuclear medicine can benefit greatly from the production of homogenous derivatives, we hope that this review will aid the use of enzymes for the development of better radio-conjugates for diagnostic and therapeutic purposes.


Assuntos
Proteínas/química , Transglutaminases/química , Animais , Humanos , Imunoconjugados/química , Peptídeos/química , Coloração e Rotulagem/métodos
8.
Commun Biol ; 3(1): 764, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311636

RESUMO

Aggregation of human wild-type transthyretin (hTTR), a homo-tetrameric plasma protein, leads to acquired senile systemic amyloidosis (SSA), recently recognised as a major cause of cardiomyopathies in 1-3% older adults. Fragmented hTTR is the standard composition of amyloid deposits in SSA, but the protease(s) responsible for amyloidogenic fragments generation in vivo is(are) still elusive. Here, we show that subtilisin secreted from Bacillus subtilis, a gut microbiota commensal bacterium, translocates across a simulated intestinal epithelium and cleaves hTTR both in solution and human plasma, generating the amyloidogenic fragment hTTR(59-127), which is also found in SSA amyloids in vivo. To the best of our knowledge, these findings highlight a novel pathogenic mechanism for SSA whereby increased permeability of the gut mucosa, as often occurs in elderly people, allows subtilisin (and perhaps other yet unidentified bacterial proteases) to reach the bloodstream and trigger generation of hTTR fragments, acting as seeding nuclei for preferential amyloid fibrils deposition in the heart.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Bacillus subtilis/enzimologia , Pré-Albumina/metabolismo , Serina Proteases/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/química , Linhagem Celular , Humanos , Hidrólise , Espectrometria de Massas/métodos , Modelos Moleculares , Permeabilidade , Pré-Albumina/química , Conformação Proteica , Serina Proteases/química , Subtilisina/química , Subtilisina/metabolismo
9.
Toxicon ; 170: 99-107, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563525

RESUMO

Almost all animal venoms contain secretory phospholipases A2 (PLA2s), 14 kDa disulfide-rich enzymes that hydrolyze membrane phospholipids at the sn-2 position, releasing lysophospholipids and fatty acids. These proteins, depending on their sequence, show a wide variety of biochemical, toxic and pharmacological effects and deserve to be studied for their numerous possible applications, and to improve antivenom drugs. The cellular localization and activity of a protein can be studied by conjugating it with a tag. In this work, we applied an enzymatic labelling method, using Streptomyces mobaraense transglutaminase, on three snake venom PLA2s: a recombinant neuro- and myotoxic group I PLA2 from Notechis scutatus scutatus, and two myotoxic group II PLA2s from Bothrops asper - one of them a natural catalytically inactive variant. We demonstrate that TGase can be used to produce active mono- or bi-derivatives of these three PLA2s modified at specific Lys residues, and that all three of these proteins, conjugated with fluorescent peptides, are internalized in primary myotubes.


Assuntos
Venenos de Crotalídeos/enzimologia , Venenos Elapídicos/enzimologia , Elapidae , Fosfolipases A2/química , Animais , Bothrops , Streptomyces , Transglutaminases/química
10.
Sci Rep ; 8(1): 10619, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006575

RESUMO

Phospholipases A2 are a major component of snake venoms. Some of them cause severe muscle necrosis through an unknown mechanism. Phospholipid hydrolysis is a possible explanation of their toxic action, but catalytic and toxic properties of PLA2s are not directly connected. In addition, viperid venoms contain PLA2-like proteins, which are very toxic even if they lack catalytic activity due to a critical mutation in position 49. In this work, the PLA2-like Bothrops asper myotoxin-II, conjugated with the fluorophore TAMRA, was found to be internalized in mouse myotubes, and in RAW264.7 cells. Through experiments of protein fishing and mass spectrometry analysis, using biotinylated Mt-II as bait, we found fifteen proteins interacting with the toxin and among them nucleolin, a nucleolar protein present also on cell surface. By means of confocal microscopy, Mt-II and nucleolin were shown to colocalise, at 4 °C, on cell membrane where they form Congo-red sensitive assemblies, while at 37 °C, 20 minutes after the intoxication, they colocalise in intracellular spots going from plasmatic membrane to paranuclear and nuclear area. Finally, nucleolin antagonists were found to inhibit the Mt-II internalization and toxic activity and were used to identify the nucleolin regions involved in the interaction with the toxin.


Assuntos
Venenos de Crotalídeos/metabolismo , Fosfolipases A2 do Grupo II/metabolismo , Neurotoxinas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Répteis/metabolismo , Animais , Bothrops , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Venenos de Crotalídeos/toxicidade , Fosfolipases A2 do Grupo II/toxicidade , Células HeLa , Humanos , Hidrólise , Microscopia Intravital , Camundongos , Microscopia Confocal , Fibras Musculares Esqueléticas , Neurotoxinas/toxicidade , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Cultura Primária de Células , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Células RAW 264.7 , Interferência de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Répteis/toxicidade , Nucleolina
11.
Amino Acids ; 50(7): 923-932, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29627904

RESUMO

Microbial transglutaminase (TGase) has been successfully used to produce site-specific protein conjugates derivatized at the level of glutamine (Gln) or lysine (Lys) residues with diverse applications. Here, we study the drug human interferon ß-1a (IFN) as a substrate of TGase. The derivatization reaction was performed using carbobenzoxy-L-glutaminyl-glycine to modify Lys residues and dansylcadaverine for Gln residues. The 166 amino acids polypeptide chain of IFN ß-1a contains 11 Lys and 11 Gln residues potential sites of TGase derivatization. By means of mass spectrometry analyses, we demonstrate the highly selective derivatization of this protein by TGase at the level of Lys115 and as secondary site at the level of Lys33, while no reactive Gln residue was detected. Limited proteolysis experiments were performed on IFN to determine flexible regions of the protein under physiological conditions. Interestingly, primary and secondary sites of limited proteolysis and of TGase derivatization occur at the same regions of the polypeptide chain, indicating that the extraordinary selectivity of the TGase-mediated reaction is dictated by the conformational features of the protein substrate. We envisage that the TGase-mediated derivatization of IFN can be used to produce interesting derivatives of this important therapeutic protein.


Assuntos
Proteínas de Bactérias/química , Interferon beta-1a/química , Lisina/química , Processamento de Proteína Pós-Traducional , Streptomyces/enzimologia , Transglutaminases/química , Cadaverina/análogos & derivados , Cadaverina/química , Humanos
12.
J Inorg Biochem ; 183: 18-31, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29529469

RESUMO

An assessment study involving the use of the transglutaminase (TGase) conjugation method and the nitride-technetium-99m labelling on a bis(thiosemicarbazone) (BTS) bifunctional chelating agent is presented. The previously described chelator diacetyl-2-(N4-methyl-3-thiosemicarbazone)-3-(N4-amino-3-thiosemicarbazone), H2ATSM/A, has been functionalized with 6-aminohexanoic acid (ε-Ahx) to generate the bifunctional chelating agent diacetyl-2-(N4-methyl-3-thiosemicarbazone)-3-[N4-(amino)-(6-aminohexanoic acid)-3-thiosemicarbazone], H2ATSM/A-ε-Ahx (1), suitable for conjugation to glutamine (Gln) residues of bioactive molecules via TGase. The feasibility of the TGase reaction in the synthesis of a bioconjugate derivative was investigated using Substance P (SP) as model peptide. Compounds 1 and H2ATSM/A-ε-Ahx-SP (2) were labelled with nitride-technetium-99m, obtaining the complexes [99mTc][Tc(N)(ATSM/A-ε-Ahx)] (99mTc1) and [99mTc][Tc(N)(ATSM/A-ε-Ahx-SP)] (99mTc2). The chemical identity of 99mTc1 and 99mTc2 was confirmed by radio/UV-RP-HPLC combined with ESI-MS analysis on the respective carrier-added products 99g/99mTc1 and 99g/99mTc2. The stability of the radiolabelled complexes after incubation in various environments was investigated. All the results were compared with those obtained for the corresponding 64Cu-analogues, 64Cu1 and 64Cu2. The TGase reaction allows the conjugation of 1 with the peptide, but it is not highly efficient due to instability of the chelator in the required conditions. The SP-conjugated complexes are unstable in mouse and human sera. However, indeed the BTS system can be exploited as nitride-technetium-99m chelator for highly efficient technetium labelling, thus making compound 1 worthy of further investigations for new targeted technetium and copper radiopharmaceuticals encompassing Single Photon Emission Computed Tomography and Positron Emission Tomography imaging.


Assuntos
Tecnécio/química , Transglutaminases/metabolismo , Quelantes/química , Substância P/química
13.
EMBO Rep ; 19(2): 257-268, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217657

RESUMO

The permeability transition pore (PTP) is a Ca2+-dependent mitochondrial channel whose opening causes a permeability increase in the inner membrane to ions and solutes. The most potent inhibitors are matrix protons, with channel block at pH 6.5. Inhibition is reversible, mediated by histidyl residue(s), and prevented by their carbethoxylation by diethylpyrocarbonate (DPC), but their assignment is unsolved. We show that PTP inhibition by H+ is mediated by the highly conserved histidyl residue (H112 in the human mature protein) of oligomycin sensitivity conferral protein (OSCP) subunit of mitochondrial F1FO (F)-ATP synthase, which we also show to undergo carbethoxylation after reaction of mitochondria with DPC. Mitochondrial PTP-dependent swelling cannot be inhibited by acidic pH in H112Q and H112Y OSCP mutants, and the corresponding megachannels (the electrophysiological counterpart of the PTP) are insensitive to inhibition by acidic pH in patch-clamp recordings of mitoplasts. Cells harboring the H112Q and H112Y mutations are sensitized to anoxic cell death at acidic pH. These results demonstrate that PTP channel formation and its inhibition by H+ are mediated by the F-ATP synthase.


Assuntos
Histidina/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Bovinos , Linhagem Celular , Permeabilidade da Membrana Celular , Histidina/química , Humanos , Hidrólise , Hipóxia/metabolismo , Camundongos , Mitocôndrias Hepáticas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Consumo de Oxigênio , Conformação Proteica , Subunidades Proteicas
14.
Bioconjug Chem ; 27(11): 2695-2706, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27731976

RESUMO

Interferon α (IFN α) subtypes are important protein drugs that have been used to treat infectious diseases and cancers. Here, we studied the reactivity of IFN α-2b to microbial transglutaminase (TGase) with the aim of obtaining a site-specific conjugation of this protein drug. Interestingly, TGase allowed the production of two monoderivatized isomers of IFN with high yields. Characterization by mass spectrometry of the two conjugates indicated that they are exclusively modified at the level of Gln101 if the protein is reacted in the presence of an amino-containing ligand (i.e., dansylcadaverine) or at the level of Lys164 if a glutamine-containing molecule is used (i.e., carbobenzoxy-l-glutaminyl-glycine, ZQG). We explained the extraordinary specificity of the TGase-mediated reaction on the basis of the conformational features of IFN. Indeed, among the 10 Lys and 12 Gln residues of the protein, only Gln101 and Lys164 are located in highly flexible protein regions. The TGase-mediated derivatization of IFN was then applied to the production of IFN derivatives conjugated to a 20 kDa polyethylene glycol (PEG), using PEG-NH2 for Gln101 derivatization and PEG modified with ZQG for Lys164 derivatization. The two mono-PEGylated isomers of IFN were obtained in good yields, purified, and characterized in terms of protein conformation, antiviral activity, and pharmacokinetics. Both conjugates maintained a native-like secondary structure, as indicated by far-UV circular dichroism spectra. Importantly, they disclosed good in vitro antiviral activity retention (about only 1.6- to 1.8-fold lower than that of IFN) and half-lives longer (about 5-fold) than that of IFN after intravenous administration to rats. Overall, these results provide evidence that TGase can be used for the development of site-specific derivatives of IFN α-2b possessing interesting antiviral and pharmacokinetic properties.


Assuntos
Glutamina/química , Interferon-alfa/química , Lisina/química , Transglutaminases/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/farmacologia , Sítios de Ligação , Humanos , Interferon alfa-2 , Interferon-alfa/farmacocinética , Interferon-alfa/farmacologia , Modelos Moleculares , Peso Molecular , Polietilenoglicóis/química , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Especificidade por Substrato , Vesiculovirus/efeitos dos fármacos
15.
Aquat Toxicol ; 152: 47-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727215

RESUMO

The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal.


Assuntos
Aminoaciltransferases/genética , Cádmio/toxicidade , Ciona intestinalis/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Sequência de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Animais , Cádmio/análise , Ciona intestinalis/química , Ciona intestinalis/classificação , Ciona intestinalis/enzimologia , Ciona intestinalis/genética , Perfilação da Expressão Gênica , Ordem dos Genes , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Poluentes Químicos da Água/análise
16.
Bioconjug Chem ; 25(3): 470-80, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24517223

RESUMO

Avidin conjugates have several important applications in biotechnology and medicine. In this work, we investigated the possibility to produce site-specific derivatives of avidin using microbial transglutaminase (TGase). TGase allows the modification of proteins at the level of Gln or Lys residues using as substrate an alkyl-amine or a Gln-mimicking moiety, respectively. The reaction is site-specific, since Gln and Lys derivatization occurs preferentially at residues embedded in flexible regions of protein substrates. An analysis of the X-ray structure of avidin allowed us to predict Gln126 and Lys127 as potential sites of TGase's attack, because these residues are located in the flexible/unfolded C-terminal region of the protein. Surprisingly, incubation of avidin with TGase in the presence of alkylamine containing substrates (dansylcadaverine, 5-hydroxytryptamine) revealed a very low level of derivatization of the Gln126 residue. Analysis of the TGase reaction on synthetic peptide analogues of the C-terminal portion of avidin indicated that the lack of reactivity of Gln126 was likely due to the fact that this residue is proximal to negatively charged carboxylate groups, thus hampering the interaction of the substrate at the negatively charged active site of TGase. On the other hand, incubation of avidin with TGase in the presence of carbobenzoxy-l-glutaminyl-glycine in order to derivatize Lys residue(s) resulted in a clean and high yield production of an avidin derivative, retaining the biotin binding properties and the quaternary structure of the native protein. Proteolytic digestion of the modified protein, followed by mass spectrometry, allowed us to identify Lys127 as the major site of reaction, together with a minor modification of Lys58. By using TGase, avidin was also conjugated via a Lys-Gln isopeptide bond to a protein containing a single reactive Gln residue, namely, Gln126 of granulocyte-macrophage colony-stimulating factor. TGase can thus be exploited for the site-specific derivatization of avidin with small molecules or proteins.


Assuntos
Avidina/química , Streptomyces/enzimologia , Transglutaminases/química , Sequência de Aminoácidos , Animais , Avidina/metabolismo , Galinhas , Modelos Moleculares , Dados de Sequência Molecular , Transglutaminases/isolamento & purificação , Transglutaminases/metabolismo
17.
J Bioenerg Biomembr ; 45(6): 569-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23943123

RESUMO

Over the past few years, several reports have described the presence of F0F1 ATP synthase subunits at the surface of hepatocytes, where the hydrolytic activity of F1 sector faces outside and triggers HDL endocytosis. An intriguing question is whether the ectopic enzyme has same subunit composition and molecular mass as that of the mitochondrial ATP synthase. Also due to the polar nature of hepatocytes, the enzyme may be localized to a particular cell boundary. Using different methods to prepare rat liver plasma membranes, which have been subjected to digitonin extraction, hr CN PAGE, immunoblotting, and mass spectrometry analysis, we demonstrate the presence of ecto-F0F1 complexes which have a similar molecular weight to the monomeric form of the mitochondrial complexes, containing both nuclear and mitochondrially-encoded subunits. This finding makes it unlikely that the enzyme assembles on the plasma membranes, but suggest it to be transported whole after being assembled in mitochondria by still unknown pathways. Moreover, the plasma membrane preparation enriched in basolateral proteins contains much higher amounts of complete and active F0F1 complexes, consistent with their specific function to modulate the HDL uptake on hepatocyte surface.


Assuntos
Hepatócitos/enzimologia , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Animais , Membrana Celular/enzimologia , Hepatócitos/citologia , Fígado/patologia , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley
18.
Biochim Biophys Acta ; 1834(6): 1125-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23499846

RESUMO

A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or "molten globule" state, leading to the idea that partly folded proteins can have "beneficial effects". The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid.


Assuntos
Ácidos Graxos/metabolismo , Lactalbumina/metabolismo , Ácido Oleico/metabolismo , Ácidos Oleicos/metabolismo , Apoptose/fisiologia , Morte Celular/fisiologia , Ácidos Graxos/genética , Humanos , Lactalbumina/genética , Ácido Oleico/genética , Ácidos Oleicos/genética
19.
Proc Natl Acad Sci U S A ; 110(15): 6163-8, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23536301

RESUMO

Cryptochromes are flavoproteins, structurally and evolutionarily related to photolyases, that are involved in the development, magnetoreception, and temporal organization of a variety of organisms. Drosophila CRYPTOCHROME (dCRY) is involved in light synchronization of the master circadian clock, and its C terminus plays an important role in modulating light sensitivity and activity of the protein. The activation of dCRY by light requires a conformational change, but it has been suggested that activation could be mediated also by specific "regulators" that bind the C terminus of the protein. This C-terminal region harbors several protein-protein interaction motifs, likely relevant for signal transduction regulation. Here, we show that some functional linear motifs are evolutionarily conserved in the C terminus of cryptochromes and that class III PDZ-binding sites are selectively maintained in animals. A coimmunoprecipitation assay followed by mass spectrometry analysis revealed that dCRY interacts with Retinal Degeneration A (RDGA) and with Neither Inactivation Nor Afterpotential C (NINAC) proteins. Both proteins belong to a multiprotein complex (the Signalplex) that includes visual-signaling molecules. Using bioinformatic and molecular approaches, dCRY was found to interact with Neither Inactivation Nor Afterpotential C through Inactivation No Afterpotential D (INAD) in a light-dependent manner and that the CRY-Inactivation No Afterpotential D interaction is mediated by specific domains of the two proteins and involves the CRY C terminus. Moreover, an impairment of the visual behavior was observed in fly mutants for dCRY, indicative of a role, direct or indirect, for this photoreceptor in fly vision.


Assuntos
Criptocromos/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Proteínas do Olho/fisiologia , Visão Ocular/fisiologia , Motivos de Aminoácidos , Animais , Sítios de Ligação , Biologia Computacional , Drosophila melanogaster/metabolismo , Eletrorretinografia , Flavoproteínas/metabolismo , Luz , Espectrometria de Massas , Mapeamento de Interação de Proteínas , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
20.
Biochemistry ; 51(43): 8679-89, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23083324

RESUMO

The transglutaminase (TGase) from Streptomyces mobaraensis catalyzes transamidation reactions in a protein substrate leading to the modification of the side chains of Gln and Lys residues according to the A-CONH(2) + H(2)N-B → A-CONH-B + NH(3) reaction, where both A and B can be a protein or a ligand. A noteworthy property of TGase is its susbstrate specificity, so that often only a few specific Gln or Lys residues can be modified in a globular protein. The molecular features of a globular protein dictating the site-specific reactions mediated by TGase are yet poorly understood. Here, we have analyzed the reactivity toward TGase of apomyoglobin (apoMb), α-lactalbumin (α-LA), and fragment 205-316 of thermolysin. These proteins are models of protein structure and folding that have been studied previously using the limited proteolysis technique to unravel regions of local unfolding in their amino acid sequences. The three proteins were modified by TGase at the level of Gln or Lys residues with dansylcadaverine or carbobenzoxy-l-glutaminylglycine, respectively. Despite these model proteins containing several Gln and Lys residues, the sites of TGase derivatization occur over restricted chain regions of the protein substrates. In particular, the TGase-mediated modifications occur in the "helix F" region in apoMb, in the ß-domain in apo-α-LA in its molten globule state, and in the N-terminal region in fragment 205-316 of thermolysin. Interestingly, the sites of limited proteolysis are located in the same chain regions of these proteins, thus providing a clear-cut demonstration that chain flexibility or local unfolding overwhelmingly dictates the site-specific modification by both TGase and a protease.


Assuntos
Apoproteínas/metabolismo , Lactalbumina/metabolismo , Mioglobina/metabolismo , Desdobramento de Proteína , Streptomyces/enzimologia , Termolisina/metabolismo , Transglutaminases/metabolismo , Sequência de Aminoácidos , Animais , Apoproteínas/química , Bacillus/enzimologia , Bovinos , Cavalos , Lactalbumina/química , Modelos Moleculares , Dados de Sequência Molecular , Mioglobina/química , Conformação Proteica , Dobramento de Proteína , Proteólise , Termolisina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...