Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503930

RESUMO

Baicalin is a flavone glycoside derived from flowering plants belonging to the Scutellaria genus. Previous studies have reported baicalin's anti-inflammatory and neuroprotective properties in rodent models, indicating the potential of baicalin in neuropsychiatric disorders where alterations in numerous processes are observed. However, the extent of baicalin's therapeutic effects remains undetermined in a human cell model, more specifically, neuronal cells to mimic the brain environment in vitro. As a proof of concept, we treated C8-B4 cells (murine cell model) with three different doses of baicalin (0.1, 1 and 5 µM) and vehicle control (DMSO) for 24 h after liposaccharide-induced inflammation and measured the levels of TNF-α in the medium by ELISA. NT2-N cells (human neuronal-like cell model) underwent identical baicalin treatment, followed by RNA extraction, genome-wide mRNA expression profiles and gene set enrichment analysis (GSEA). We also performed neurite outgrowth assays and mitochondrial flux bioanalysis (Seahorse) in NT2-N cells. We found that in C8-B4 cells, baicalin at ≥ 1 µM exhibited anti-inflammatory effects, lowering TNF-α levels in the cell culture media. In NT2-N cells, baicalin positively affected neurite outgrowth and transcriptionally up-regulated genes in the tricarboxylic acid cycle and the glycolysis pathway. Similarly, Seahorse analysis showed increased oxygen consumption rate in baicalin-treated NT2-N cells, an indicator of enhanced mitochondrial function. Together, our findings have confirmed the neuroprotective and mitochondria enhancing effects of baicalin in human-neuronal like cells. Given the increased prominence of mitochondrial mechanisms in diverse neuropsychiatric disorders and the paucity of mitochondrial therapeutics, this suggests the potential therapeutic application of baicalin in human neuropsychiatric disorders where these processes are altered.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38072867

RESUMO

Schizophrenia (SCZ) is a complex neuropsychiatric disorder associated with altered bioenergetic pathways and mitochondrial dysfunction. Antipsychotic medications, both first and second-generation, are commonly prescribed to manage SCZ symptoms, but their direct impact on mitochondrial function remains poorly understood. In this study, we investigated the effects of commonly prescribed antipsychotics on bioenergetic pathways in cultured neurons. We examined the impact of risperidone, aripiprazole, amisulpride, and clozapine on gene expression, mitochondrial bioenergetic profile, and targeted metabolomics after 24-h treatment, using RNA-seq, Seahorse XF24 Flux Analyser, and gas chromatography-mass spectrometry (GC-MS), respectively. Risperidone treatment reduced the expression of genes involved in oxidative phosphorylation, the tricarboxylic acid cycle, and glycolysis pathways, and it showed a tendency to decrease basal mitochondrial respiration. Aripiprazole led to dose-dependent reductions in various mitochondrial function parameters without significantly affecting gene expression. Aripiprazole, amisulpride and clozapine treatment showed an effect on the tricarboxylic acid cycle metabolism, leading to more abundant metabolite levels. Antipsychotic drug effects on mitochondrial function in SCZ are multifaceted. While some drugs have greater effects on gene expression, others appear to exert their effects through enzymatic post-translational or allosteric modification of enzymatic activity. Understanding these effects is crucial for optimising treatment strategies for SCZ. Novel therapeutic interventions targeting energy metabolism by post-transcriptional pathways might be more effective as these can more directly and efficiently regulate energy production.

3.
Neurotox Res ; 41(6): 502-513, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922109

RESUMO

Novel approaches are required to find new treatments for schizophrenia and other neuropsychiatric disorders. This study utilised a combination of in vitro transcriptomics and in silico analysis with the BROAD Institute's Connectivity Map to identify drugs that can be repurposed to treat psychiatric disorders. Human neuronal (NT2-N) cells were treated with a combination of atypical antipsychotic drugs commonly used to treat psychiatric disorders (such as schizophrenia, bipolar disorder, and major depressive disorder), and differential gene expression was analysed. Biological pathways with an increased gene expression included circadian rhythm and vascular endothelial growth factor signalling, while the adherens junction and cell cycle pathways were transcriptionally downregulated. The Connectivity Map (CMap) analysis screen highlighted drugs that affect global gene expression in a similar manner to these psychiatric disorder treatments, including several other antipsychotic drugs, confirming the utility of this approach. The CMap screen specifically identified metergoline, an ergot alkaloid currently used to treat seasonal affective disorder, as a drug of interest. In mice, metergoline dose-dependently reduced MK-801- or methamphetamine-induced locomotor hyperactivity confirming the potential of metergoline to treat positive symptoms of schizophrenia in an animal model. Metergoline had no effects on prepulse inhibition deficits induced by MK-801 or methamphetamine. Taken together, metergoline appears a promising drug for further studies to be repurposed as a treatment for schizophrenia and possibly other psychiatric disorders.


Assuntos
Antipsicóticos , Transtorno Depressivo Maior , Metanfetamina , Humanos , Camundongos , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Metergolina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Maleato de Dizocilpina , Transcriptoma , Fator A de Crescimento do Endotélio Vascular
4.
Bipolar Disord ; 25(8): 661-670, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36890661

RESUMO

OBJECTIVES: The aim of this study was to repurpose a drug for the treatment of bipolar depression. METHODS: A gene expression signature representing the overall transcriptomic effects of a cocktail of drugs widely prescribed to treat bipolar disorder was generated using human neuronal-like (NT2-N) cells. A compound library of 960 approved, off-patent drugs were then screened to identify those drugs that affect transcription most similar to the effects of the bipolar depression drug cocktail. For mechanistic studies, peripheral blood mononuclear cells were obtained from a healthy subject and reprogrammed into induced pluripotent stem cells, which were then differentiated into co-cultured neurons and astrocytes. Efficacy studies were conducted in two animal models of depressive-like behaviours (Flinders Sensitive Line rats and social isolation with chronic restraint stress rats). RESULTS: The screen identified trimetazidine as a potential drug for repurposing. Trimetazidine alters metabolic processes to increase ATP production, which is thought to be deficient in bipolar depression. We showed that trimetazidine increased mitochondrial respiration in cultured human neuronal-like cells. Transcriptomic analysis in induced pluripotent stem cell-derived neuron/astrocyte co-cultures suggested additional mechanisms of action via the focal adhesion and MAPK signalling pathways. In two different rodent models of depressive-like behaviours, trimetazidine exhibited antidepressant-like activity with reduced anhedonia and reduced immobility in the forced swim test. CONCLUSION: Collectively our data support the repurposing of trimetazidine for the treatment of bipolar depression.


Assuntos
Transtorno Bipolar , Trimetazidina , Ratos , Humanos , Animais , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transcriptoma , Reposicionamento de Medicamentos , Leucócitos Mononucleares , Modelos Animais de Doenças
5.
Pharmacopsychiatry ; 56(1): 25-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36170869

RESUMO

INTRODUCTION: Mood disorders are a major cause of disability, and current treatment options are inadequate for reducing the burden on a global scale. The aim of this project was to identify drugs suitable for repurposing to treat mood disorders. METHODS: This mixed-method study utilized gene expression signature technology and pharmacoepidemiology to investigate drugs that may be suitable for repurposing to treat mood disorders. RESULTS: The transcriptional effects of a combination of drugs commonly used to treat mood disorders included regulation of the steroid and terpenoid backbone biosynthesis pathways, suggesting a mechanism involving cholesterol biosynthesis, and effects on the thyroid hormone signaling pathway. Connectivity Map analysis highlighted metformin, an FDA-approved treatment for type 2 diabetes, as a drug having global transcriptional effects similar to the mood disorder drug combination investigated. In a retrospective cohort study, we found evidence that metformin is protective against the onset of mood disorders. DISCUSSION: These results provide proof-of-principle of combining gene expression signature technology with pharmacoepidemiology to identify potential novel drugs for treating mood disorders. Importantly, metformin may have utility in the treatment of mood disorders, warranting future randomized controlled trials to test its efficacy.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Transtornos do Humor/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Retrospectivos
6.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806181

RESUMO

Altered protein synthesis has been implicated in the pathophysiology of several neuropsychiatric disorders, particularly schizophrenia. Ribosomes are the machinery responsible for protein synthesis. However, there remains little information on whether current psychotropic drugs affect ribosomes and contribute to their therapeutic effects. We treated human neuronal-like (NT2-N) cells with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM) or vehicle control for 24 h. Transcriptomic and gene set enrichment analysis (GSEA) identified that the ribosomal pathway was altered by these drugs. We found that three of the eight drugs tested significantly decreased ribosomal gene expression, whilst one increased it. Most changes were observed in the components of cytosolic ribosomes and not mitochondrial ribosomes. Protein synthesis assays revealed that aripiprazole, clozapine and lithium all decreased protein synthesis. Several currently prescribed psychotropic drugs seem to impact ribosomal gene expression and protein synthesis. This suggests the possibility of using protein synthesis inhibitors as novel therapeutic agents for neuropsychiatric disorders.


Assuntos
Antipsicóticos , Clozapina , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Aripiprazol , Benzodiazepinas/uso terapêutico , Clozapina/uso terapêutico , Humanos , Lítio , Olanzapina , Psicotrópicos/farmacologia , Psicotrópicos/uso terapêutico , Fumarato de Quetiapina , Ribossomos
7.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35886854

RESUMO

There is little understanding of the underlying molecular mechanism(s) involved in the clinical efficacy of antipsychotics for schizophrenia. This study integrated schizophrenia-associated transcriptional perturbations with antipsychotic-induced gene expression profiles to detect potentially relevant therapeutic targets shared by multiple antipsychotics. Human neuronal-like cells (NT2-N) were treated for 24 h with one of the following antipsychotic drugs: amisulpride, aripiprazole, clozapine, risperidone, or vehicle controls. Drug-induced gene expression patterns were compared to schizophrenia-associated transcriptional data in post-mortem brain tissues. Genes regulated by each of four antipsychotic drugs in the reverse direction to schizophrenia were identified as potential therapeutic-relevant genes. A total of 886 genes were reversely expressed between at least one drug treatment (versus vehicle) and schizophrenia (versus healthy control), in which 218 genes were commonly regulated by all four antipsychotic drugs. The most enriched biological pathways include Wnt signaling and action potential regulation. The protein-protein interaction (PPI) networks found two main clusters having schizophrenia expression quantitative trait loci (eQTL) genes such as PDCD10, ANK2, and AKT3, suggesting further investigation on these genes as potential novel treatment targets.


Assuntos
Antipsicóticos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Benzodiazepinas/uso terapêutico , Dibenzotiazepinas/uso terapêutico , Humanos , Olanzapina , Piperazinas/uso terapêutico , Fumarato de Quetiapina , Tiazóis/uso terapêutico , Transcriptoma
8.
Front Pharmacol ; 13: 873271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462908

RESUMO

Long non-coding RNAs (lncRNAs) may play a role in psychiatric diseases including bipolar disorder (BD). We investigated mRNA-lncRNA co-expression patterns in neuronal-like cells treated with widely prescribed BD medications. The aim was to unveil insights into the complex mechanisms of BD medications and highlight potential targets for new drug development. Human neuronal-like (NT2-N) cells were treated with either lamotrigine, lithium, quetiapine, valproate or vehicle for 24 h. Genome-wide mRNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs with lncRNAs. Functional enrichment analysis and hub lncRNA identification was conducted on key co-expressed modules associated with the drug response. We constructed lncRNA-mRNA co-expression networks and identified key modules underlying these treatments, as well as their enriched biological functions. Processes enriched in key modules included synaptic vesicle cycle, endoplasmic reticulum-related functions and neurodevelopment. Several lncRNAs such as GAS6-AS1 and MIR100HG were highlighted as driver genes of key modules. Our study demonstrates the key role of lncRNAs in the mechanism(s) of action of BD drugs. Several lncRNAs have been suggested as major regulators of medication effects and are worthy of further investigation as novel drug targets to treat BD.

9.
J Psychiatr Res ; 150: 105-112, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366598

RESUMO

The molecular mechanism(s) underpinning the clinical efficacy of the current drugs for bipolar disorder (BD) are largely unknown. This study evaluated the transcriptional perturbations potentially playing roles in the therapeutic efficacy of four commonly prescribed psychotropic drugs used to treat BD. NT2-N cells were treated with lamotrigine, lithium, quetiapine, valproate or vehicle control for 24 h. Genome-wide mRNA expression was quantified by RNA-sequencing. Incorporating drug-induced gene expression profiles with BD-associated transcriptional changes from post-mortem brains, we identified potential therapeutic-relevant genes associated with both drug treatments and BD pathophysiology and focused on expression quantitative trait loci (eQTL) genes with genome-wide association with BD. Each eQTL gene was ranked based on its potential role in the therapeutic effect across multiple drugs. The expression of highest-ranked eQTL genes were measured by RT-qPCR to confirm their transcriptional changes observed in RNA-seq. We found 775 genes for which at least 2 drugs reversed expression levels relative to the differential expression in post-mortem brains. Pathway analysis identified enriched biological processes highlighting mitochondrial and endoplasmic reticulum function. Differential expression of SRPK2 and CHDH was confirmed by RT-qPCR following multiple-dose treatments. We pinpointed potential genes involved in the beneficial effects of drugs used for BD and their main associated biological pathways. CHDH, which encodes a mitochondrial protein, had a significant dose-responsive downregulation following treatment with increasing doses of quetiapine and lamotrigine, which in combination with the enriched mitochondrial pathways suggests potential therapeutic roles and demand more studies on mitochondrial involvement in BD to identify novel treatment targets.


Assuntos
Transtorno Bipolar , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Lamotrigina/farmacologia , Lamotrigina/uso terapêutico , Proteínas Serina-Treonina Quinases , Locos de Características Quantitativas/genética , Fumarato de Quetiapina/farmacologia
10.
Eur Neuropsychopharmacol ; 53: 120-126, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757312

RESUMO

Smoking represents a significant health threat to the population, however there remains a core group of consistent smokers that are largely unable to break the addiction. Novel therapies are required to assist this group with cessation. N-acetylcysteine (NAC) is a nutraceutical supplement that has shown efficacy compared to placebo in previous pilot studies for assisting smokers to quit or reduce their consumption of cigarettes. A double-blind, randomised trial with a treatment period of 16 weeks and a final follow-up at 42 weeks was conducted comparing 1.8g of effervescent NAC per day (n=47) with placebo (n=47) as an aide to smoking cessation. Both study arms received adjunctive online support through the QuitCoach program. Participants reported smoking at each timepoint (baseline and weeks 8, 16 & 42), which was confirmed through salivary cotinine and exhaled carbon monoxide testing. Primary and secondary analyses were undertaken using a modified intent-to-treat basis, including all participants with at least one valid post baseline outcome, regardless of treatment received or their withdrawal from the study. There was no significant difference in smoking outcomes between intervention groups among the 24 participants that competed follow-up. There were no significant differences in age, gender, or body mass index (BMI) between the groups lost to follow-up or recorded at follow-up. This study found no evidence to support NAC as a therapy for smoking cessation. The negative outcome could be the result of lack of treatment efficacy, or alternatively, small sample size, participant retention difficulties, dose, or duration of follow-up. Trial Registration: Australian New Zealand Clinical Trials registry (ANZCTR), ACTRN12617001478303. Registered on 19 October 2017.


Assuntos
Acetilcisteína , Abandono do Hábito de Fumar , Acetilcisteína/uso terapêutico , Austrália , Humanos , Projetos Piloto , Fumar Tabaco , Resultado do Tratamento
11.
J Clin Med ; 10(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575210

RESUMO

Weight gain and consequent metabolic alterations are common side-effects of many antipsychotic drugs. Interestingly, several studies have suggested that improvement in symptoms and adverse metabolic effects are correlated. We used next generation sequencing data from NT-2 (human neuronal) cells treated with aripiprazole, amisulpride, risperidone, quetiapine, clozapine, or vehicle control, and compared with the Pillinger P-score (ranked from 0 to 1, indicating greater increase in weight gain and related metabolic parameters) to identify the genes most associated with the drugs' propensity to cause weight gain. The top 500 genes ranked for their correlation with the drugs' propensity to cause weight gain were subjected to pathway analysis using DAVID (NIH). We further investigated transcription factors (TFs) that are more likely to regulate the genes involved in these processes using the prediction tool of key TFs from TRRUST. The results suggest an enrichment for genes involved in lipid biosynthesis and metabolism, which are of interest for mechanisms underpinning weight-gain. The list of genes involved in the lipid pathways that correlated with weight gain was enriched for genes transcriptionally regulated by SREBF1 and SREBF2. Furthermore, quetiapine significantly increased the expression of SREBF1 and SREBF2 in NT-2 cells. Our results suggest that the effects of these antipsychotic drugs on lipid metabolism may be mediated, at least in part, via regulation of SREBF1/SREBF2 expression, with evidence of a direct effect of quetiapine on the expression of SREBF1/2. The effects of antipsychotic drugs on lipid metabolism may influence white matter structure (therapeutic effect) and the risk of weight gain, lipid disturbances, and, consequently, metabolic syndrome (adverse effects). Understanding the different molecular effects of these drugs could inform a personalized medicine approach in treating patients with schizophrenia.

12.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281223

RESUMO

Recent reports suggest a link between positive regulation of the Hippo pathway with bipolar disorder (BD), and the Hippo pathway is known to interact with multiple other signaling pathways previously associated with BD and other psychiatric disorders. In this study, neuronal-like NT2 cells were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM), or vehicle control for 24 h. Genome-wide mRNA expression was quantified and analyzed using gene set enrichment analysis (GSEA), with genes belonging to Hippo, Wnt, Notch, TGF- ß, and Hedgehog retrieved from the KEGG database. Five of the eight drugs downregulated the genes of the Hippo pathway and modulated several genes involved in the interacting pathways. We speculate that the regulation of these genes, especially by aripiprazole, clozapine, and quetiapine, results in a reduction of MAPK and NFκB pro-inflammatory signaling through modulation of Hippo, Wnt, and TGF-ß pathways. We also employed connectivity map analysis to identify compounds that act on these pathways in a similar manner to the known psychiatric drugs. Thirty-six compounds were identified. The presence of antidepressants and antipsychotics validates our approach and reveals possible new targets for drug repurposing.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Psicotrópicos/farmacologia , Esquizofrenia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Via de Sinalização Hippo , Humanos , Proteínas Serina-Treonina Quinases/genética , Psicotrópicos/uso terapêutico , Fatores de Transcrição/metabolismo
13.
World J Biol Psychiatry ; 22(2): 79-93, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32295468

RESUMO

OBJECTIVES: To investigate the actions of lithium, valproate, lamotrigine and quetiapine on bioenergetic pathways in cultured NT2-N neuronal-like cells and C8-B4 microglial cells. METHODS: NT2-N and C8-B4 cells were cultured and treated with lithium (2.5 mM), valproate (0.5 mM), quetiapine (0.05 mM) or lamotrigine (0.05 mM) for 24 hours. Gene expression and the mitochondrial bioenergetic profile were measured in both cell lines. RESULTS: In NT2-N cells, valproate increased oxidative phosphorylation (OXPHOS) gene expression, mitochondrial uncoupling and maximal respiratory capacity, while quetiapine decreased OXPHOS gene expression and respiration linked to ATP turnover, as well as decreasing the expression of genes in the citric acid cycle. Lamotrigine decreased OXPHOS gene expression but had no effect on respiration, while lithium reduced the expression of genes in the citric acid cycle. In C8-B4 cells, valproate and lithium increased OXPHOS gene expression, and valproate increased basal respiratory rate and maximal and spare respiratory capacities. In contrast, quetiapine significantly reduced basal respiratory rate and maximal and spare respiratory capacities. CONCLUSIONS: Overall our data suggest that some drugs used to treat neuropsychiatric and affective disorders have actions on a range of cellular bioenergetic processes, which could impact their effects in patients.


Assuntos
Metabolismo Energético , Fosforilação Oxidativa , Humanos , Psicotrópicos , Fumarato de Quetiapina/farmacologia , Ácido Valproico/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32540496

RESUMO

BACKGROUND: Elevated levels of systemic inflammation are consistently reported in both schizophrenia (SZ) and bipolar-I disorder (BD), and are associated with childhood trauma exposure. We tested whether childhood trauma exposure moderates associations between systemic inflammation and brain morphology in people with these diagnoses. METHODS: Participants were 55 SZ cases, 52 BD cases and 59 healthy controls (HC) who underwent magnetic resonance imaging. Systemic inflammation was measured using a composite z-score derived from serum concentrations of interleukin 6, tumor necrosis factor alpha and C-reactive protein. Indices of grey matter volume covariation (GMC) were derived from independent component analysis. Childhood trauma was measured using the Childhood Trauma Questionnaire (CTQ Total score). RESULTS: A series of moderated moderation analyses indicated that increased systemic inflammation were associated with increased GMC in the striatum and cerebellum among all participants. Severity of childhood trauma exposure moderated the relationship between systemic inflammation and GMC in one component, differently among the groups. Specifically, decreased GMC in the PCC/precuneus, parietal lobule and postcentral gyrus, and increased GMC in the left middle temporal gyrus was associated with increased systemic inflammation in HC individuals exposed to high (but not low or average) levels of trauma and in SZ cases exposed to low (but not average or high) levels of trauma, but not in BD cases. CONCLUSIONS: Increased systemic inflammation is associated with grey matter changes in people with psychosis, and these relationships may be partially and differentially moderated by childhood trauma exposure according to diagnosis.


Assuntos
Adultos Sobreviventes de Eventos Adversos na Infância , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/fisiologia , Adulto Jovem
15.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172123

RESUMO

Although neurogenesis is affected in several psychiatric diseases, the effects and mechanisms of action of psychoactive drugs on neurogenesis remain unknown and/or controversial. This study aims to evaluate the effects of psychoactive drugs on the expression of genes involved in neurogenesis. Neuronal-like cells (NT2-N) were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), or valproate (0.5 mM) for 24 h. Genome wide mRNA expression was quantified and analysed using gene set enrichment analysis, with the neurogenesis gene set retrieved from the Gene Ontology database and the Mammalian Adult Neurogenesis Gene Ontology (MANGO) database. Transcription factors that are more likely to regulate these genes were investigated to better understand the biological processes driving neurogenesis. Targeted metabolomics were performed using gas chromatography-mass spectrometry. Six of the eight drugs decreased the expression of genes involved in neurogenesis in both databases. This suggests that acute treatment with these psychoactive drugs negatively regulates the expression of genes involved in neurogenesis in vitro. SOX2 and three of its target genes (CCND1, BMP4, and DKK1) were also decreased after treatment with quetiapine. This can, at least in part, explain the mechanisms by which these drugs decrease neurogenesis at a transcriptional level in vitro. These results were supported by the finding of increased metabolite markers of mature neurons following treatment with most of the drugs tested, suggesting increased proportions of mature relative to immature neurons consistent with reduced neurogenesis.


Assuntos
Neurogênese/efeitos dos fármacos , Psicotrópicos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Antipsicóticos/uso terapêutico , Linhagem Celular/efeitos dos fármacos , Bases de Dados Genéticas , Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Neurogênese/genética , Psicotrópicos/metabolismo , Fatores de Transcrição SOXB1/genética
16.
J Psychopharmacol ; 34(3): 370-379, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31913086

RESUMO

BACKGROUND: The drugs commonly used to treat bipolar disorder have limited efficacy and drug discovery is hampered by the paucity of knowledge of the pathophysiology of this disease. This study aims to explore the role of microRNAs in bipolar disorder and understand the molecular mechanisms of action of commonly used bipolar disorder drugs. METHODS: The transcriptional effects of bipolar disorder drug combination (lithium, valproate, lamotrigine and quetiapine) in cultured human neuronal cells were studied using next generation sequencing. Differential expression of genes (n=20) and microRNAs (n=6) was assessed and the differentially expressed microRNAs were confirmed with TaqMan MicroRNA Assays. The expression of the differentially expressed microRNAs were inhibited to determine bipolar disorder drug effects on their target genes (n=8). Independent samples t-test was used for normally distributed data and Kruskal-Wallis/Mann-Whitney U test was used for data not distributed normally. Significance levels were set at p<0.05. RESULTS: We found that bipolar disorder drugs tended to increase the expression of miR-128 and miR-378 (p<0.05). Putative target genes of these microRNAs targeted pathways including those identified as "neuron projection development" and "axonogenesis". Many of the target genes are inhibitors of neurite outgrowth and neurogenesis and were downregulated following bipolar disorder drug combination treatment (all p<0.05). The bipolar disorder drug combination tended to decrease the expression of the target genes (NOVA1, GRIN3A, and VIM), however this effect could be reversed by the application of microRNA inhibitors. CONCLUSIONS: We conclude that at a transcriptional level, bipolar disorder drugs affect several genes in concert that would increase neurite outgrowth and neurogenesis and hence neural plasticity, and that this effect is mediated (at least in part) by modulation of the expression of these two key microRNAs.


Assuntos
Expressão Gênica/efeitos dos fármacos , MicroRNAs/biossíntese , Crescimento Neuronal/genética , Células Cultivadas , Sinergismo Farmacológico , Humanos , Lamotrigina/farmacologia , Cloreto de Lítio/farmacologia , Fumarato de Quetiapina/farmacologia , Ácido Valproico/farmacologia
17.
World J Biol Psychiatry ; 21(10): 775-783, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-29956574

RESUMO

OBJECTIVES: To create a gene expression signature (GES) to represent the biological effects of a combination of known drugs for bipolar disorder (BD) on cultured human neuronal cells (NT2-N) and rat brains, which also has evidence of differential expression in individuals with BD. To use the GES to identify new drugs for BD using Connectivity Map (CMap).Methods: NT2-N (n = 20) cells and rats (n = 8) were treated with a BD drug combination (lithium, valproate, quetiapine and lamotrigine) or vehicle for 24 and 6 h, respectively. Following next-generation sequencing, the differential expression of genes was assessed using edgeR in R. The derived GES was compared to differentially expressed genes in post-mortem brains of individuals with BD. The GES was then used in CMap analysis to identify similarly acting drugs.Results: A total of 88 genes showed evidence of differential expression in response to the drug combination in both models, and therefore comprised the GES. Six of these genes showed evidence of differential expression in post-mortem brains of individuals with BD. CMap analysis identified 10 compounds (camptothecin, chlorambucil, flupenthixol, valdecoxib, rescinnamine, GW-8510, cinnarizine, lomustine, mifepristone and nimesulide) acting similarly to the BD drug combination.Conclusions: This study shows that GES and CMap can be used as tools to repurpose drugs for BD.


Assuntos
Transtorno Bipolar , Reposicionamento de Medicamentos , Preparações Farmacêuticas , Animais , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Lamotrigina , Fumarato de Quetiapina , Ratos , Transcriptoma
18.
World J Biol Psychiatry ; 20(10): 766-777, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31535581

RESUMO

Objectives: To understand the therapeutic mechanisms of bipolar disorder (BD) drugs at molecular and cellular levels.Methods: Next generation sequencing was used to determine the transcriptional effects of a combination of four commonly prescribed BD drugs (lithium, valproate, lamotrigine and quetiapine) or vehicle (0.2% DMSO) in NT2-N (human neuronal) cells and rats. Differential expression of genes and pathway analysis were performed using edgeR in R and Gene Set Enrichment Analysis software respectively. Free cholesterol levels and neurite outgrowth were quantified in NT2-N cells following combination and individual BD drug treatments.Results: Pathway analysis showed up-regulation of many elements of the cholesterol biosynthesis pathway in NT2-N cells and oxidative phosphorylation in rat brains. Intracellular cholesterol transport genes were upregulated (NPC1, NPC2 and APOE), while the cholesterol efflux gene (ABCA1) was downregulated. BD drug combination tended to increase intracellular cholesterol levels and neurite outgrowth, but these effects were not seen for the drugs when used individually.Conclusions: These data suggest that BD drug combination is increasing cholesterol biosynthesis and the newly synthesised cholesterol is being utilised within the cells, possibly for synthesis of new membranes to facilitate neurite outgrowth. This mechanism possibly underpins clinical efficacy in individuals with BD treated with polypharmacy.


Assuntos
Antipsicóticos/farmacologia , Transtorno Bipolar/metabolismo , Colesterol/biossíntese , Crescimento Neuronal/efeitos dos fármacos , Animais , Transtorno Bipolar/tratamento farmacológico , Colesterol/genética , Quimioterapia Combinada , Perfilação da Expressão Gênica , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
19.
Psychol Med ; 49(16): 2736-2744, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30560764

RESUMO

BACKGROUND: Elevated levels of pro-inflammatory cytokines are consistently reported in schizophrenia (SZ) and bipolar-I disorder (BD), as well as among individuals who have been exposed to childhood trauma. However, higher levels of inflammatory markers in these disorders are yet to be investigated with respect to levels of exposure to different types of childhood trauma. METHODS: Participants were 68 cases with a diagnosis of schizophrenia/schizoaffective disorder (SZ), 69 cases with a diagnosis of psychotic BD and 72 healthy controls (HC). Serum levels of interleukin 6 (IL-6), tumour necrosis factor-α (TNF-α) and C-reactive protein (CRP) were quantified, and childhood trauma exposure was assessed with the Childhood Trauma Questionnaire. RESULTS: The SZ group had significantly higher levels of IL-6, TNF-α and CRP when compared with the HC group (all p < 0.05, d = 0.41-0.63), as well as higher levels of TNF-α when compared with the BD group (p = 0.014, d = 0.50); there were no differences between the BD and HC groups for any markers. Exposure to sexual abuse was positively associated (standardised ß = 0.326, t = 2.459, p = 0.018) with levels of CRP in the SZ group, but there were no significant associations between any form of trauma exposure and cytokine levels in the HC or BD groups. CONCLUSIONS: These results contribute to the evidence for a chronic state of inflammation in SZ but not BD cases. Differential associations between trauma exposure and levels of pro-inflammatory cytokines across the diagnostic categories suggest that trauma may impact biological (stress and immune) systems differently in these patient groups.


Assuntos
Sobreviventes Adultos de Maus-Tratos Infantis/psicologia , Transtorno Bipolar/imunologia , Esquizofrenia/imunologia , Adulto , Biomarcadores/sangue , Transtorno Bipolar/complicações , Transtorno Bipolar/psicologia , Proteína C-Reativa/análise , Estudos de Casos e Controles , Feminino , Humanos , Inflamação , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Esquizofrenia/complicações , Psicologia do Esquizofrênico , Fator de Necrose Tumoral alfa/sangue
20.
Mol Nutr Food Res ; 62(14): e1800134, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882289

RESUMO

SCOPE: Early life nutrition has long-lasting influence in adults through key mediators that modulate epigenetic states, although the determinants involved that underlie this response remain controversial. Because of the similarities between metabolic, physiological, and endocrine changes and those occurring in human type 2 diabetes, we studied the interaction of diet during pregnancy regulating RNA adenosine methylation (N6-methyladenosine [m6A]) and the transcriptome in Psammomys obesus. METHODS AND RESULTS: Breeding pairs were randomly allocated standard diet (total digestible energy 18 MJ kg-1 ) or low-fat diet (15 MJ kg-1 ). Offspring were weaned onto the low-fat diet at 4 weeks of age and given ad libitum access, resulting in two experimental groups: 1) male offspring of animals fed a low-fat diet and weaned onto the low-fat diet and 2) male offspring of animals fed a standard diet and weaned onto the low-fat diet. Hypothalamic RNA was used to assess m6A by immunoprecipitation. Parental low-fat diet alters the metabolic phenotype in offspring. An association between parental diet and hypothalamic m6A was observed in regulating the expression of FTO and METTL3 in the offspring. CONCLUSIONS: We propose the regulatory capacity is now broadened for the first time to include m6A in developmental programming and obesity phenotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...