Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 180: 116999, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158169

RESUMO

Bone Mineral Density (BMD) is an important parameter in the development of orthopedic fracture-healing methods. A recent article (Inoue, S., et al. Bone. 2023, 177, 116916) investigated the use of higher intensity ultrasound to promote murine bone formation by measuring BMD levels. In this work, we present the numerical values of BMD, which show sigmoid kinetics and hyperbolic asymptotic increase with the application of higher intensity ultrasound. Our analysis may provide a foundation for the understanding and application of ultrasound to the human body.


Assuntos
Densidade Óssea , Calcificação Fisiológica , Humanos , Camundongos , Animais , Ultrassonografia , Osso e Ossos/diagnóstico por imagem , Osteogênese
2.
Nat Commun ; 9(1): 4128, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297836

RESUMO

Selecting the most appropriate protein sequences is critical for precision drug design. Here we describe Haplosaurus, a bioinformatic tool for computation of protein haplotypes. Haplosaurus computes protein haplotypes from pre-existing chromosomally-phased genomic variation data. Integration into the Ensembl resource provides rapid and detailed protein haplotypes retrieval. Using Haplosaurus, we build a database of unique protein haplotypes from the 1000 Genomes dataset reflecting real-world protein sequence variability and their prevalence. For one in seven genes, their most common protein haplotype differs from the reference sequence and a similar number differs on their most common haplotype between human populations. Three case studies show how knowledge of the range of commonly encountered protein forms predicted in populations leads to insights into therapeutic efficacy. Haplosaurus and its associated database is expected to find broad applications in many disciplines using protein sequences and particularly impactful for therapeutics design.


Assuntos
Biologia Computacional/métodos , Desenho de Fármacos , Haplótipos , Medicina de Precisão/métodos , Proteínas/genética , Desenho Assistido por Computador , Genoma Humano/genética , Genômica/métodos , Humanos , Proteoma/genética , Reprodutibilidade dos Testes , Software
3.
BMC Bioinformatics ; 17(1): 496, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27923348

RESUMO

BACKGROUND: When combined with a clinical outcome variable, the size, complexity and nature of mass-spectrometry proteomics data impose great statistical challenges in the discovery of potential disease-associated biomarkers. The purpose of this study was thus to evaluate the effectiveness of different statistical methods applied for urinary proteomic biomarker discovery and different methods of classifier modelling in respect of the diagnosis of coronary artery disease in 197 study subjects and the prognostication of acute coronary syndromes in 368 study subjects. RESULTS: Computing the discovery sub-cohorts comprising [Formula: see text] of the study subjects based on the Wilcoxon rank sum test, t-score, cat-score, binary discriminant analysis and random forests provided largely different numbers (ranging from 2 to 398) of potential peptide biomarkers. Moreover, these biomarker patterns showed very little overlap limited to fragments of type I and III collagens as the common denominator. However, these differences in biomarker patterns did mostly not translate into significant differently performing diagnostic or prognostic classifiers modelled by support vector machine, diagonal discriminant analysis, linear discriminant analysis, binary discriminant analysis and random forest. This was even true when different biomarker patterns were combined into master-patterns. CONCLUSION: In conclusion, our study revealed a very considerable dependence of peptide biomarker discovery on statistical computing of urinary peptide profiles while the observed diagnostic and/or prognostic reliability of classifiers was widely independent of the modelling approach. This may however be due to the limited statistical power in classifier testing. Nonetheless, our study showed that urinary proteome analysis has the potential to provide valuable biomarkers for coronary artery disease mirroring especially alterations in the extracellular matrix. It further showed that for a comprehensive discovery of biomarkers and thus of pathological information, the results of different statistical methods may best be combined into a master pattern that then can be used for classifier modelling.


Assuntos
Doença da Artéria Coronariana/urina , Peptídeos/urina , Adulto , Biomarcadores/urina , Análise Discriminante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteômica/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-26896847

RESUMO

Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org.


Assuntos
Biologia Computacional/métodos , Genoma , Genômica , Algoritmos , Animais , DNA Complementar/genética , Bases de Dados Genéticas , Evolução Molecular , Etiquetas de Sequências Expressas , Humanos , Filogenia , Controle de Qualidade , RNA não Traduzido/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Software
6.
BMC Bioinformatics ; 15 Suppl 14: S7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25472764

RESUMO

BACKGROUND: Computational biology comprises a wide range of technologies and approaches. Multiple technologies can be combined to create more powerful workflows if the individuals contributing the data or providing tools for its interpretation can find mutual understanding and consensus. Much conversation and joint investigation are required in order to identify and implement the best approaches. Traditionally, scientific conferences feature talks presenting novel technologies or insights, followed up by informal discussions during coffee breaks. In multi-institution collaborations, in order to reach agreement on implementation details or to transfer deeper insights in a technology and practical skills, a representative of one group typically visits the other. However, this does not scale well when the number of technologies or research groups is large. Conferences have responded to this issue by introducing Birds-of-a-Feather (BoF) sessions, which offer an opportunity for individuals with common interests to intensify their interaction. However, parallel BoF sessions often make it hard for participants to join multiple BoFs and find common ground between the different technologies, and BoFs are generally too short to allow time for participants to program together. RESULTS: This report summarises our experience with computational biology Codefests, Hackathons and Sprints, which are interactive developer meetings. They are structured to reduce the limitations of traditional scientific meetings described above by strengthening the interaction among peers and letting the participants determine the schedule and topics. These meetings are commonly run as loosely scheduled "unconferences" (self-organized identification of participants and topics for meetings) over at least two days, with early introductory talks to welcome and organize contributors, followed by intensive collaborative coding sessions. We summarise some prominent achievements of those meetings and describe differences in how these are organised, how their audience is addressed, and their outreach to their respective communities. CONCLUSIONS: Hackathons, Codefests and Sprints share a stimulating atmosphere that encourages participants to jointly brainstorm and tackle problems of shared interest in a self-driven proactive environment, as well as providing an opportunity for new participants to get involved in collaborative projects.


Assuntos
Biologia Computacional , Comportamento Cooperativo , Software , Comunicação , Internet
7.
F1000Res ; 3: 55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25075290

RESUMO

BioJS is a community-based standard and repository of functional components to represent biological information on the web. The development of BioJS has been prompted by the growing need for bioinformatics visualisation tools to be easily shared, reused and discovered. Its modular architecture makes it easy for users to find a specific functionality without needing to know how it has been built, while components can be extended or created for implementing new functionality. The BioJS community of developers currently provides a range of functionality that is open access and freely available. A registry has been set up that categorises and provides installation instructions and testing facilities at http://www.ebi.ac.uk/tools/biojs/. The source code for all components is available for ready use at https://github.com/biojs/biojs.

8.
PLoS One ; 7(11): e46596, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144785

RESUMO

PICARA is an analytical pipeline designed to systematically summarize observed SNP/trait associations identified by genome wide association studies (GWAS) and to identify candidate genes involved in the regulation of complex trait variation. The pipeline provides probabilistic inference about a priori candidate genes using integrated information derived from genome-wide association signals, gene homology, and curated gene sets embedded in pathway descriptions. In this paper, we demonstrate the performance of PICARA using data for flowering time variation in maize - a key trait for geographical and seasonal adaption of plants. Among 406 curated flowering time-related genes from Arabidopsis, we identify 61 orthologs in maize that are significantly enriched for GWAS SNP signals, including key regulators such as FT (Flowering Locus T) and GI (GIGANTEA), and genes centered in the Arabidopsis circadian pathway, including TOC1 (Timing of CAB Expression 1) and LHY (Late Elongated Hypocotyl). In addition, we discover a regulatory feature that is characteristic of these a priori flowering time candidates in maize. This new probabilistic analytical pipeline helps researchers infer the functional significance of candidate genes associated with complex traits and helps guide future experiments by providing statistical support for gene candidates based on the integration of heterogeneous biological information.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Locos de Características Quantitativas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Probabilidade
9.
Database (Oxford) ; 2012: bar056, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22374386

RESUMO

Gramene is a well-established resource for plant comparative genome analysis. Data are generated through automated and curated analyses and made available through web interfaces such as GrameneMart. The Gramene project was an early adopter of the BioMart software, which remains an integral and well-used component of the Gramene website. BioMart accessible data sets include plant gene annotations, plant variation catalogues, genetic markers, physical mapping entities, public DNA/mRNA sequences of various types and curated quantitative trait loci for various species. DATABASE URL: http://www.gramene.org/biomart/martview.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genoma de Planta , Genes de Plantas , Marcadores Genéticos , Internet , Locos de Características Quantitativas
10.
Database (Oxford) ; 2011: bar041, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21930507

RESUMO

BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities.


Assuntos
Pesquisa Biomédica , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Internet , Animais , Bactérias , Fungos , Genoma , Humanos , Cooperação Internacional , Interface Usuário-Computador , Vírus
11.
Nucleic Acids Res ; 39(Database issue): D1085-94, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21076153

RESUMO

Now in its 10th year, the Gramene database (http://www.gramene.org) has grown from its primary focus on rice, the first fully-sequenced grass genome, to become a resource for major model and crop plants including Arabidopsis, Brachypodium, maize, sorghum, poplar and grape in addition to several species of rice. Gramene began with the addition of an Ensembl genome browser and has expanded in the last decade to become a robust resource for plant genomics hosting a wide array of data sets including quantitative trait loci (QTL), metabolic pathways, genetic diversity, genes, proteins, germplasm, literature, ontologies and a fully-structured markers and sequences database integrated with genome browsers and maps from various published studies (genetic, physical, bin, etc.). In addition, Gramene now hosts a variety of web services including a Distributed Annotation Server (DAS), BLAST and a public MySQL database. Twice a year, Gramene releases a major build of the database and makes interim releases to correct errors or to make important updates to software and/or data.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Plantas/genética , Mapeamento Cromossômico , Genes de Plantas , Variação Genética , Genômica , Redes e Vias Metabólicas , Plantas/metabolismo , Locos de Características Quantitativas , Sintenia
12.
Database (Oxford) ; 2009: bap005, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20157478

RESUMO

Gramene is a comparative information resource for plants that integrates data across diverse data domains. In this article, we describe the development of a quantitative trait loci (QTL) database and illustrate how it can be used to facilitate both the forward and reverse genetics research. The QTL database contains the largest online collection of rice QTL data in the world. Using flanking markers as anchors, QTLs originally reported on individual genetic maps have been systematically aligned to the rice sequence where they can be searched as standard genomic features. Researchers can determine whether a QTL co-localizes with other QTLs detected in independent experiments and can combine data from multiple studies to improve the resolution of a QTL position. Candidate genes falling within a QTL interval can be identified and their relationship to particular phenotypes can be inferred based on functional annotations provided by ontology terms. Mutations identified in functional genomics populations and association mapping panels can be aligned with QTL regions to facilitate fine mapping and validation of gene-phenotype associations. By assembling and integrating diverse types of data and information across species and levels of biological complexity, the QTL database enhances the potential to understand and utilize QTL information in biological research.

13.
Nucleic Acids Res ; 36(Database issue): D947-53, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17984077

RESUMO

Gramene (www.gramene.org) is a curated resource for genetic, genomic and comparative genomics data for the major crop species, including rice, maize, wheat and many other plant (mainly grass) species. Gramene is an open-source project. All data and software are freely downloadable through the ftp site (ftp.gramene.org/pub/gramene) and available for use without restriction. Gramene's core data types include genome assembly and annotations, other DNA/mRNA sequences, genetic and physical maps/markers, genes, quantitative trait loci (QTLs), proteins, ontologies, literature and comparative mappings. Since our last NAR publication 2 years ago, we have updated these data types to include new datasets and new connections among them. Completely new features include rice pathways for functional annotation of rice genes; genetic diversity data from rice, maize and wheat to show genetic variations among different germplasms; large-scale genome comparisons among Oryza sativa and its wild relatives for evolutionary studies; and the creation of orthologous gene sets and phylogenetic trees among rice, Arabidopsis thaliana, maize, poplar and several animal species (for reference purpose). We have significantly improved the web interface in order to provide a more user-friendly browsing experience, including a dropdown navigation menu system, unified web page for markers, genes, QTLs and proteins, and enhanced quick search functions.


Assuntos
Produtos Agrícolas/genética , Bases de Dados Genéticas , Genoma de Planta , Arabidopsis/genética , Mapeamento Cromossômico , Produtos Agrícolas/metabolismo , Marcadores Genéticos , Variação Genética , Genômica , Internet , Oryza/genética , Poaceae/genética , Triticum/genética , Interface Usuário-Computador , Zea mays/genética
14.
Nucleic Acids Res ; 34(Database issue): D717-23, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381966

RESUMO

Rice, maize, sorghum, wheat, barley and the other major crop grasses from the family Poaceae (Gramineae) are mankind's most important source of calories and contribute tens of billions of dollars annually to the world economy (FAO 1999, http://www.fao.org; USDA 1997, http://www.usda.gov). Continued improvement of Poaceae crops is necessary in order to continue to feed an ever-growing world population. However, of the major crop grasses, only rice (Oryza sativa), with a compact genome of approximately 400 Mbp, has been sequenced and annotated. The Gramene database (http://www.gramene.org) takes advantage of the known genetic colinearity (synteny) between rice and the major crop plant genomes to provide maize, sorghum, millet, wheat, oat and barley researchers with the benefits of an annotated genome years before their own species are sequenced. Gramene is a one stop portal for finding curated literature, genetic and genomic datasets related to maps, markers, genes, genomes and quantitative trait loci. The addition of several new tools to Gramene has greatly facilitated the potential for comparative analysis among the grasses and contributes to our understanding of the anatomy, development, environmental responses and the factors influencing agronomic performance of cereal crops. Since the last publication on Gramene database by D. H. Ware, P. Jaiswal, J. Ni, I. V. Yap, X. Pan, K. Y. Clark, L. Teytelman, S. C. Schmidt, W. Zhao, K. Chang et al. [(2002), Plant Physiol., 130, 1606-1613], the database has undergone extensive changes that are described in this publication.


Assuntos
Mapeamento Cromossômico , Bases de Dados Genéticas , Grão Comestível/genética , Genoma de Planta , Arabidopsis/genética , Genes de Plantas , Marcadores Genéticos , Genômica , Internet , Oryza/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Interface Usuário-Computador , Vocabulário Controlado , Zea mays/genética
15.
Genome Res ; 14(5): 951-5, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15123591

RESUMO

The Ensembl Web site (http://www.ensembl.org/) is the principal user interface to the data of the Ensembl project, and currently serves >500,000 pages (approximately 2.5 million hits) per week, providing access to >80 GB (gigabyte) of data to users in more than 80 countries. Built atop an open-source platform comprising Apache/mod_perl and the MySQL relational database management system, it is modular, extensible, and freely available. It is being actively reused and extended in several different projects, and has been downloaded and installed in companies and academic institutions worldwide. Here, we describe some of the technical features of the site, with particular reference to its dynamic configuration that enables it to handle disparate data from multiple species.


Assuntos
Biologia Computacional/métodos , Internet , Software/tendências , Animais , Biologia Computacional/tendências , Bases de Dados Genéticas/tendências , Humanos , Camundongos
16.
Genome Res ; 14(1): 160-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14707178

RESUMO

The EnsMart system (www.ensembl.org/EnsMart) provides a generic data warehousing solution for fast and flexible querying of large biological data sets and integration with third-party data and tools. The system consists of a query-optimized database and interactive, user-friendly interfaces. EnsMart has been applied to Ensembl, where it extends its genomic browser capabilities, facilitating rapid retrieval of customized data sets. A wide variety of complex queries, on various types of annotations, for numerous species are supported. These can be applied to many research problems, ranging from SNP selection for candidate gene screening, through cross-species evolutionary comparisons, to microarray annotation. Users can group and refine biological data according to many criteria, including cross-species analyses, disease links, sequence variations, and expression patterns. Both tabulated list data and biological sequence output can be generated dynamically, in HTML, text, Microsoft Excel, and compressed formats. A wide range of sequence types, such as cDNA, peptides, coding regions, UTRs, and exons, with additional upstream and downstream regions, can be retrieved. The EnsMart database can be accessed via a public Web site, or through a Java application suite. Both implementations and the database are freely available for local installation, and can be extended or adapted to 'non-Ensembl' data sets.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Animais , Sequência de Bases , Biologia Computacional/métodos , Gráficos por Computador , Genes/genética , Humanos , Camundongos , Dados de Sequência Molecular , Ratos , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...