Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793986

RESUMO

In this paper, a dispersion of glass beads of different sizes in an ammonium nitrate solution is investigated with the aid of Raman spectroscopy. The signal losses caused by the dispersion are quantified by an additional scattered light measurement and used to correct the measured ammonium nitrate concentration. Each individual glass bead represents an interface at which the excitation laser is deflected from its direction causing distortion in the received Raman signal. It is shown that the scattering losses measured with the scattered light probe correlate with the loss of the Raman signal, which means that the data obtained can be used to correct the measured values. The resulting correction function considers different particle sizes in the range of 2-99 µm as well as ammonium nitrate concentrations of 0-20 wt% and delivers an RMSEP of 1.952 wt%. This correction provides easier process access to dispersions that were previously difficult or impossible to measure.

2.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257407

RESUMO

In the present study, the influence of disperse systems on Raman scattering was investigated. How an increasing particle concentration weakens the quantitative signal of the Raman spectrum is shown. Furthermore, the change in the position of the optimal measurement point in the fluid was considered in detail. Additional transmission measurements can be used to derive a simple and robust correction method that allows the actual concentration of the continuous phase to be determined with a standard deviation of 2.6%.

3.
Sensors (Basel) ; 22(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015859

RESUMO

Quality control and reaction monitoring are necessary to ensure the consistency of any kind of mixing or reaction process. In this context, a novel portable high-sensitivity sensor prototype based on the Raman effect is presented in this study. The elongated probe head is designed for (but not limited to) monitoring high temperature batch processes for quality assurance. Thanks to the highly sensitive special detectors, concentration differences of up to 50 mmol/L can currently be detected, which facilitates compliance with high product quality standards. In addition, seamless reaction tracking is possible. Small individual adjustments through simple, intuitive mechanical components provide a high degree of flexibility in reaction selection by the end user. Specially developed software automates the evaluation process and gives the user visual signals about the current status and progress of the batch as well as an emergency stop if temperature limits could damage individual components. By using all the individual components developed, the problem of the limited integration times of previous spectrometric measuring instruments could be reduced. The prototype was validated using concentration measurements of various substances that occur as standard in batch processes. In addition, this article provides an outlook on the fact that Raman measurements can also be carried out successfully and reliably in explosive environments in the future with the prototype presented.


Assuntos
Substâncias Explosivas , Temperatura Alta , Fotometria , Controle de Qualidade , Temperatura
4.
Sensors (Basel) ; 21(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062767

RESUMO

To meet the demands of the chemical and pharmaceutical process industry for a combination of high measurement accuracy, product selectivity, and low cost of ownership, the existing measurement and evaluation methods have to be further developed. This paper demonstrates the attempt to combine future Raman photometers with promising evaluation methods. As part of the investigations presented here, a new and easy-to-use evaluation method based on a self-learning algorithm is presented. This method can be applied to various measurement methods and is carried out here using an example of a Raman spectrometer system and an alcohol-water mixture as demonstration fluid. The spectra's chosen bands can be later transformed to low priced and even more robust Raman photometers. The evaluation method gives more precise results than the evaluation through classical methods like one primarily used in the software package Unscrambler. This technique increases the accuracy of detection and proves the concept of Raman process monitoring for determining concentrations. In the example of alcohol/water, the computation time is less, and it can be applied to continuous column monitoring.


Assuntos
Análise Espectral Raman , Tecnologia Farmacêutica , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...