Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncolytics ; 7: 17-26, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29034312

RESUMO

Oncolytic viruses are an emerging class of cancer therapeutics that couple cytotoxicity with the induction of an anti-tumor immune response. Host-virus interactions are complex and modulated by a tumor microenvironment whose immunosuppressive activities can limit the effectiveness of cancer immunotherapies. In an effort to improve this aspect of oncolytic virotherapy, we combined the oncolytic herpes virus HSV1716 with the transforming growth factor beta receptor 1 (TGF-ßR1) inhibitor A8301 to treat syngeneic models of murine rhabdomyosarcoma. Mice that received HSV1716 or A8301 alone showed little to no benefit in efficacy and survival over controls. Conversely, mice given combination therapy exhibited tumor stabilization throughout the treatment regimen, which was reflected in significantly prolonged survival times including some complete responses. In vitro cell viability and virus replication assays showed that the rhabdomyosarcoma cell lines were generally insensitive to HSV1716 and A8301. Likewise, in vivo virus replication assays showed that HSV1716 titers moderately decreased in the presence of A8301. The enhanced efficacy instead appears to be dependent on the generation of an improved anti-tumor T cell response as determined by its loss in athymic nude mice and following in vivo depletion of either CD4+ or CD8+ cells. These data suggest TGF-ß inhibition can augment the immunotherapeutic efficacy of oncolytic herpes virotherapy.

2.
Sci Rep ; 7(1): 2396, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539588

RESUMO

Oncolytic virotherapy is an effective immunotherapeutic approach for cancer treatment via a multistep process including direct tumor cell lysis, induction of cytotoxic or apoptosis-sensitizing cytokines and promotion of antitumor T cell responses. Solid tumors limit the effectiveness of immunotherapeutics in diverse ways such as secretion of immunosuppressive cytokines and expression of immune inhibitory ligands to inhibit antitumor T cell function. Blocking programmed cell death protein (PD)-1 signaling, which mediates T cell suppression via engagement of its inhibitory ligands, PD-L1 or PD-L2, is of particular interest due to recent successes in many types of cancer. In syngeneic murine rhabdomyosarcoma models, we found that M3-9-M (MHC I high) but not 76-9 (MHC I low) tumors respond to oncolytic herpes simplex virus-1 (oHSV-1) and PD-1 blockade combination therapy. In addition, the therapeutic outcomes in M3-9-M tumor models correlated with the increased incidence of CD4+ and CD8+ T cells but not with the CD4+CD25+Foxp3+ regulatory T cell populations in the tumor. Overall, our data suggest the combination of PD-1 blockade and oHSV-1 may be an effective treatment strategy for childhood soft tissue sarcoma.


Assuntos
Anticorpos Monoclonais/farmacologia , Terapia Combinada/métodos , Terapia Viral Oncolítica/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Rabdomiossarcoma/terapia , Simplexvirus/fisiologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Expressão Gênica , Injeções Intralesionais , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Rabdomiossarcoma/genética , Rabdomiossarcoma/imunologia , Rabdomiossarcoma/mortalidade , Análise de Sobrevida , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
3.
Oncotarget ; 8(11): 17412-17427, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28147331

RESUMO

Malignant peripheral nerve sheath tumor (MPNST) and neuroblastoma models respond to the investigational small molecule Aurora A kinase inhibitor, alisertib. We previously reported that MPNST and neuroblastomas are also susceptible to oncolytic herpes virus (oHSV) therapy. Herein, we show that combination of alisertib and HSV1716, a virus derived from HSV-1 and attenuated by deletion of RL1, exhibits significantly increased antitumor efficacy compared to either monotherapy. Alisertib and HSV1716 reduced tumor growth and increased survival in two xenograft models of MPNST and neuroblastoma. We found the enhanced antitumor effect was due to multiple mechanisms that likely each contribute to the combination effect. First, oncolytic herpes virus increased the sensitivity of uninfected cells to alisertib cytotoxicity, a process we term virus-induced therapeutic adjuvant (VITA). Second, alisertib increased peak virus production and slowed virus clearance from tumors, both likely a consequence of it preventing virus-mediated increase of intratumoral NK cells. We also found that alisertib inhibited virus-induced accumulation of intratumoral myeloid derived suppressor cells, which normally are protumorigenic. Our data suggest that clinical trials of the combination of oHSV and alisertib are warranted in patients with neuroblastoma or MPNST.


Assuntos
Antineoplásicos/administração & dosagem , Azepinas/administração & dosagem , Neurilemoma/patologia , Neuroblastoma/patologia , Terapia Viral Oncolítica/métodos , Pirimidinas/administração & dosagem , Animais , Aurora Quinase A/antagonistas & inibidores , Western Blotting , Linhagem Celular Tumoral , Terapia Combinada , Citotoxicidade Imunológica/imunologia , Feminino , Citometria de Fluxo , Herpesvirus Humano 1 , Humanos , Imunidade Inata/imunologia , Imuno-Histoquímica , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...