Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Invasions ; 25(3): 873-888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36439632

RESUMO

The primary role for scientific information in addressing complex environmental problems, such as biological invasions, is generally assumed to be as a guide for management decisions. However, scientific information often plays a minor role in decision-making, with practitioners instead relying on professional experience and local knowledge. We explore alternative pathways by which scientific information could help reduce the spread and impacts of invasive species. Our study centred on attempts to understand the main motivations and constraints of three local governance bodies responsible for the management of invasive (wilding) conifer species in the southern South Island of New Zealand in achieving strategic and operational goals. We used a combination of workshop discussions, questionnaire responses and visits to field sites to elicit feedback from study participants. We applied a mixed inductive-deductive thematic analysis approach to derive themes from the feedback received. The three main themes identified were: (1) impacts of wilding conifers and goals for wilding conifer control, (2) barriers to achieving medium- and long-term goals, and (3) science needed to support wilding conifer control. Participants identified reversal and prevention of both instrumental (e.g. reduced water availability for agriculture) and intrinsic (e.g. loss of biodiversity and landscape values) impacts of wilding conifer invasions as primary motivators behind wilding conifer control. Barriers to achieving goals were overwhelmingly social, relating either to unwillingness of landowners to participate or poorly designed regulatory frameworks. Consequently, science needs related primarily to gaining social licence to remove wilding conifers from private land and for more appropriate regulations. Scientific information provided via spread and impacts forecasting models was viewed as a key source of scientific information in gaining social licence. International experience suggests that invasive species control programmes often face significant external social barriers. Thus, for many biological invasions, the primary role of science might be to achieve social licence and regulatory support for the long-term goals of invasive species control programmes and the management interventions required to achieve those goals.

2.
PeerJ ; 4: e2677, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27896027

RESUMO

BACKGROUND: Honeybees (Apis mellifera L.) are frequently used in agriculture for pollination services because of their abundance, generalist floral preferences, ease of management and hive transport. However, their populations are declining in many countries. Agri-Environment Schemes (AES) are being implemented in agricultural systems to combat the decline in populations of pollinators and other insects. Despite AES being increasingly embedded in policy and budgets, scientific assessments of many of these schemes still are lacking, and only a few studies have examined the extent to which insect pollinators use the floral enhancements that are part of AES and on which floral components they feed (i.e., pollen and/or nectar). METHODS: In the present work, we used a combination of observations on honeybee foraging for nectar/pollen from the Californian annual plant Phacelia tanacetifolia in the field, collection of pollen pellets from hives, and pollen identification, to assess the value of adding phacelia to an agro-ecosystem to benefit honeybees. RESULTS: It was found that phacelia pollen was almost never taken by honeybees. The work here demonstrates that honeybees may not use the floral enhancements added to a landscape as expected and points to the need for more careful assessments of what resources are used by honeybees in AES and understanding the role, if any, which AES play in enhancing pollinator fitness. DISCUSSION: We recommend using the methodology in this paper to explore the efficacy of AES before particular flowering species are adopted more widely to give a more complete illustration of the actual efficacy of AES.

3.
PeerJ ; 3: e1454, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26644985

RESUMO

Widespread replacement of native ecosystems by productive land sometimes results in the outbreak of a native species. In New Zealand, the introduction of exotic pastoral plants has resulted in diet alteration of the native coleopteran species, Costelytra zealandica (White) (Scarabaeidae) such that this insect has reached the status of pest. In contrast, C. brunneum (Broun), a congeneric species, has not developed such a relationship with these 'novel' host plants. This study investigated the feeding preferences and fitness performance of these two closely related scarab beetles to increase fundamental knowledge about the mechanisms responsible for the development of invasive characteristics in native insects. To this end, the feeding preference of third instar larvae of both Costelytra species was investigated using an olfactometer device, and the survival and larval growth of the invasive species C. zealandica were compared on native and exotic host plants. Costelytra zealandica, when sampled from exotic pastures, was unable to fully utilise its ancestral native host and showed higher feeding preference and performance on exotic plants. In contrast, C. zealandica sampled from native grasslands did not perform significantly better on either host and showed similar feeding preferences to C. brunneum, which exhibited no feeding preference. This study suggests the possibility of strong intraspecific variation in the ability of C. zealandica to exploit native or exotic plants, supporting the hypothesis that such ability underpins the existence of distinct host-races in this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...