Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455718

RESUMO

In this work, the microstructure and mechanical properties of an additively manufactured X3NiCoMoTi18-9-5 maraging steel were determined. Optical and electron microscopies revealed the formation of melt pool boundaries and epitaxial grain growth with cellular dendritic structures after the laser powder bed fusion (LPBF) process. The cooling rate is estimated to be around 106 °C/s during solidification, which eliminates the nucleation of any precipitates. However, it allows the formation of austenite with a volume fraction of about 5% and dendritic structures with primary arm spacing of 0.41 ± 0.23 µm. The electron backscatter diffraction analysis showed the formation of elongated grains with significant low-angle grain boundaries (LAGBs). Then, a solutionizing treatment was applied to the as-printed samples to dissolve all the secondary phases, followed by aging treatment. The reverted austenite was evident after heat treatment, which transformed into martensite after tensile testing. The critical plastic stresses for this transformation were determined using the double differentiation method. The tensile strength of the alloy increased from 1214 MPa to 2106 MPa after the aging process due to the formation of eta phase. The experimental data were complemented with thermodynamic and mechanical properties simulations, which showed a discrepancy of less than 3%.

2.
Astrobiology ; 17(6-7): 595-611, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28731819

RESUMO

The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.

3.
J Geophys Res Planets ; 121(1): 75-106, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27134806

RESUMO

The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations-like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.

4.
Meteorit Planet Sci ; 48(7): 1108-1129, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26074719

RESUMO

The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316-328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for this rather thin fallback impactite sequence may be the location of the drill core on an elevated part of the central uplift. A general lack of large coherent melt bodies is evident, similar to that found at the similarly sized Bosumtwi impact crater in Ghana that, however, was formed in a target composed of a thin layer of sediment above crystalline rocks.

5.
Nature ; 418(6897): 487-8, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12152058
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...