Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864723

RESUMO

We report the development of a continuous-wave and pulsed X-band electron spin resonance (ESR) spectrometer for the study of spins on ordered surfaces down to cryogenic temperatures. The spectrometer operates in ultra-high vacuum and utilizes a half-wavelength microstrip line resonator realized using epitaxially grown copper films on single crystal Al2O3 substrates. The one-dimensional microstrip line resonator exhibits a quality factor of more than 200 at room temperature, close to the upper limit determined by radiation losses. The surface characterizations of the copper strip of the resonator by atomic force microscopy, low-energy electron diffraction, and scanning tunneling microscopy show that the surface is atomically clean, flat, and single crystalline. Measuring the ESR spectrum at 15 K from a few nm thick molecular film of YPc2, we find a continuous-wave ESR sensitivity of 2.6 × 1011 spins/G · Hz1/2, indicating that a signal-to-noise ratio of 3.9 G · Hz1/2 is expected from a monolayer of YPc2 molecules. Advanced pulsed ESR experimental capabilities, including dynamical decoupling and electron-nuclear double resonance, are demonstrated using free radicals diluted in a glassy matrix.

2.
Chem Sci ; 15(6): 2141-2157, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332818

RESUMO

Nd-based nitride clusterfullerenes NdM2N@C80 with rare-earth metals of different sizes (M = Sc, Y, Lu) were synthesized to elucidate the influence of the cluster composition, shape and internal strain on the structural and magnetic properties. Single crystal X-ray diffraction revealed a very short Nd-N bond length in NdSc2N@C80. For Lu and Y analogs, the further shortening of the Nd-N bond and pyramidalization of the NdM2N cluster are predicted by DFT calculations as a result of the increased cluster size and a strain caused by the limited size of the fullerene cage. The short distance between Nd and nitride ions leads to a very large ligand-field splitting of Nd3+ of 1100-1200 cm-1, while the variation of the NdM2N cluster composition and concomitant internal strain results in the noticeable modulation of the splitting, which could be directly assessed from the well-resolved fine structure in the Nd-based photoluminescence spectra of NdM2N@C80 clusterfullerenes. Photoluminescence measurements also revealed an unprecedentedly strong nephelauxetic effect, pointing to a high degree of covalency. The latter appears detrimental to the magnetic axiality despite the strong ligand field. As a result, the ground magnetic state has considerable transversal components of the pseudospin g-tensor, and the slow magnetic relaxation of NdSc2N@C80 could be observed by AC magnetometry only in the presence of a magnetic field. A combination of the well-resolved magneto-optical states and slow relaxation of magnetization suggests that Nd clusterfullerenes can be useful building blocks for magneto-photonic quantum technologies.

3.
Nanoscale ; 14(27): 9877-9892, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35781298

RESUMO

Realization of stable spin states in surface-supported magnetic molecules is crucial for their applications in molecular spintronics, memory storage or quantum information processing. In this work, we studied the surface magnetism of dimetallo-azafullerene Tb2@C79N, showing a broad magnetic hysteresis in a bulk form. Surprisingly, monolayers of Tb2@C79N exhibited a completely different behavior, with the prevalence of a ground state with antiferromagnetic coupling at low magnetic field and a metamagnetic transition in the magnetic field of 2.5-4 T. Monolayers of Tb2@C79N were deposited onto Cu(111) and Au(111) by evaporation in ultra-high vacuum conditions, and their topography and electronic structure were characterized by scanning tunneling microscopy and spectroscopy (STM/STS). X-ray photoelectron spectroscopy (XPS), in combination with DFT studies, revealed that the nitrogen atom of the azafullerene cage tends to avoid metallic surfaces. Magnetic properties of the (sub)monolayers were then studied by X-ray magnetic circular dichroism (XMCD) at the Tb-M4,5 absorption edge. While in bulk powder samples Tb2@C79N behaves as a single-molecule magnet with ferromagnetically coupled magnetic moments and blocking of magnetization at 28 K, its monolayers exhibited a different ground state with antiferromagnetic coupling of Tb magnetic moments. To understand if this unexpected behavior is caused by a strong hybridization of fullerenes with metallic substrates, XMCD measurements were also performed for Tb2@C79N adsorbed on h-BN|Rh(111) and MgO|Ag(100). The co-existence of two forms of Tb2@C79N was found on these substrates as well, but magnetization curves showed narrow magnetic hysteresis detectable up to 25 K. The non-magnetic state of Tb2@C79N in monolayers is assigned to anionic Tb2@C79N- species with doubly-occupied Tb-Tb bonding orbital and antiferromagnetic coupling of the Tb moments. A charge transfer from the substrate or trapping of secondary electrons are discussed as a plausible origin of these species.

4.
Adv Sci (Weinh) ; 8(5): 2000777, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717832

RESUMO

Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low-dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self-assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene-SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X-ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self-assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self-assembly of fullerene-SMM derivatives offers a facile solution-based procedure for the preparation of functional magnetic sub-monolayers with excellent SMM performance.

5.
Chemistry ; 26(11): 2436-2449, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31774196

RESUMO

The substitution of scandium in fullerene single-molecule magnets (SMMs) DySc2 N@C80 and Dy2 ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2 N@C80 , which shows a higher blocking temperature of magnetization (TB =9.5 K), longer relaxation times, and broader hysteresis than DySc2 N@C80 (TB =6.9 K). At the same time, Dy2 LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2 ScN@C80 (TB =8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2 MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2 LuN@C80 and Dy2 ScN@C80 are of similar strength, the exchange interactions in Dy2 LuN@C80 are close to zero. Analysis of the low-frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k-space. This mixing simplifies the spin-lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice.

6.
Angew Chem Int Ed Engl ; 59(14): 5756-5764, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31860759

RESUMO

Magnetic hysteresis is demonstrated for monolayers of the single-molecule magnet (SMM) Dy2 ScN@C80 deposited on Au(111), Ag(100), and MgO|Ag(100) surfaces by vacuum sublimation. The topography and electronic structure of Dy2 ScN@C80 adsorbed on Au(111) were studied by STM. X-ray magnetic CD studies show that the Dy2 ScN@C80 monolayers exhibit similarly broad magnetic hysteresis independent on the substrate used, but the orientation of the Dy2 ScN cluster depends strongly on the surface. DFT calculations show that the extent of the electronic interaction of the fullerene molecules with the surface is increasing dramatically from MgO to Au(111) and Ag(100). However, the charge redistribution at the fullerene-surface interface is fully absorbed by the carbon cage, leaving the state of the endohedral cluster intact. This Faraday cage effect of the fullerene preserves the magnetic bistability of fullerene-SMMs on conducting substrates and facilitates their application in molecular spintronics.

7.
Chem Commun (Camb) ; 55(86): 13000-13003, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31608903

RESUMO

Variable temperature X-ray diffraction studies on two single crystals containing M3N@C80, i.e., Ho2LuN@C80·NiOEP·2(C6H6) and Lu3N@C80·NiOEP·2(C6H6), (NiOEP = Nickel octaethylporphyrin) unravelled the temperature dependent rotation of the M3N cluster and C80 cage on the static NiOEP molecule.

8.
Acc Chem Res ; 52(10): 2981-2993, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31571482

RESUMO

A characteristic phenomenon of lanthanide-fullerene interactions is the transfer of metal valence electrons to the carbon cage. With early lanthanides such as La, a complete transfer of six valence electrons takes place for the metal dimers encapsulated in the fullerene cage. However, the low energy of the σ-type Ln-Ln bonding orbital in the second half of the lanthanide row limits the Ln2 → fullerene transfer to only five electrons. One electron remains in the Ln-Ln bonding orbital, whereas the fullerene cage with a formal charge of -5 is left electron-deficient. Such Ln2@C80 molecules are unstable in the neutral form but can be stabilized by substitution of one carbon atom by nitrogen to give azafullerenes Ln2@C79N or by quenching the unpaired electron on the fullerene cage by reacting it with a chemical such as benzyl bromide, transforming one sp2 carbon into an sp3 carbon and yielding the monoadduct Ln2@C80(CH2Ph). Because of the presence of the Ln-Ln bonding molecular orbital with one electron, the Ln2@C79N and Ln2@C80(R) molecules feature a unique single-electron Ln-Ln bond and an unconventional +2.5 oxidation state of the lanthanides. In this Account, which brings together metallofullerenes, molecular magnets, and lanthanides in unconventional valence states, we review the progress in the studies of dimetallofullerenes with single-electron Ln-Ln bonds and highlight the consequences of the unpaired electron residing in the Ln-Ln bonding orbital for the magnetic interactions between Ln ions. Usually, Ln···Ln exchange coupling in polynuclear lanthanide compounds is weak because of the core nature of 4f electrons. However, when interactions between Ln centers are mediated by a radical bridge, stronger coupling may be achieved because of the diffuse nature of radical-based orbitals. Ultimately, when the role of a radical bridge is played by a single unpaired electron in the Ln-Ln bonding orbital, the strength of the exchange coupling is increased dramatically. Giant exchange coupling in endohedral Ln2 dimers is combined with a rather strong axial ligand field exerted on the lanthanide ions by the fullerene cage and the excess electron density localized between two Ln ions. As a result, Ln2@C79N and Ln2@C80(CH2Ph) compounds exhibit slow relaxation of magnetization and exceptionally high blocking temperatures for Ln = Dy and Tb. At low temperatures, the [Ln3+-e-Ln3+] fragment behaves as a single giant spin. Furthermore, the Ln-Ln bonding orbital in dimetallofullerenes is redox-active, which allows its population to be changed by electrochemical reactions, thus changing the magnetic properties because the change in the number of electrons residing in the Ln-Ln orbital affects the magnetic structure of the molecule.

9.
Nat Commun ; 10(1): 571, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718550

RESUMO

Engineering intramolecular exchange interactions between magnetic metal atoms is a ubiquitous strategy for designing molecular magnets. For lanthanides, the localized nature of 4f electrons usually results in weak exchange coupling. Mediating magnetic interactions between lanthanide ions via radical bridges is a fruitful strategy towards stronger coupling. In this work we explore the limiting case when the role of a radical bridge is played by a single unpaired electron. We synthesize an array of air-stable Ln2@C80(CH2Ph) dimetallofullerenes (Ln2 = Y2, Gd2, Tb2, Dy2, Ho2, Er2, TbY, TbGd) featuring a covalent lanthanide-lanthanide bond. The lanthanide spins are glued together by very strong exchange interactions between 4f moments and a single electron residing on the metal-metal bonding orbital. Tb2@C80(CH2Ph) shows a gigantic coercivity of 8.2 Tesla at 5 K and a high 100-s blocking temperature of magnetization of 25.2 K. The Ln-Ln bonding orbital in Ln2@C80(CH2Ph) is redox active, enabling electrochemical tuning of the magnetism.

10.
Dalton Trans ; 48(9): 2861-2871, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30756104

RESUMO

This article outlines the magnetic properties of single molecule magnets based on Dy-encapsulating endohedral metallofullerenes. The factors that govern these properties, such as the influence of different non-metal species in clusterfullerenes, the cage size, and cage isomerism are discussed, as well as the recent successful isolation of dimetallofullerenes with unprecedented magnetic properties. Finally, recent advances towards the organization of endohedral metallofullerenes in 1D, 2D, and 3D ordered structures with potential for devices are reviewed.

11.
Angew Chem Int Ed Engl ; 58(18): 5891-5896, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30786125

RESUMO

The azafullerene Tb2 @C79 N is found to be a single-molecule magnet with a high 100-s blocking temperature of magnetization of 24 K and large coercivity. Tb magnetic moments with an easy-axis single-ion magnetic anisotropy are strongly coupled by the unpaired spin of the single-electron Tb-Tb bond. Relaxation of magnetization in Tb2 @C79 N below 15 K proceeds via quantum tunneling of magnetization with the characteristic time τQTM =16 462±1230 s. At higher temperature, relaxation follows the Orbach mechanism with a barrier of 757±4 K, corresponding to the excited states, in which one of the Tb spins is flipped.

12.
Chem Commun (Camb) ; 54(70): 9730-9733, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30079423

RESUMO

Magnetic properties of endohedral metallofullerenes with nitride clusters DySc2N and Dy2ScN and different carbon cages are studied by SQUID magnetometry. All molecules behave as single molecule magnets (SMMs) and exhibit magnetic hysteresis. It is found that the blocking temperature of magnetization and relaxation times strongly depend on the fullerene cage, with the C80-Ih isomer offering the best SMM properties.

13.
Chem Sci ; 8(9): 6451-6465, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263779

RESUMO

A method for the selective synthesis of sulfide clusterfullerenes Dy2S@C2n is developed. Addition of methane to the reactive atmosphere reduces the formation of empty fullerenes in the arc-discharge synthesis, whereas the use of Dy2S3 as a source of metal and sulfur affords sulfide clusterfullerenes as the main fullerene products along with smaller amounts of carbide clusterfullerenes. Two isomers of Dy2S@C82 with Cs(6) and C3v(8) cage symmetry, Dy2S@C72-Cs(10528), and a carbide clusterfullerene Dy2C2@C82-Cs(6) were isolated. The molecular structure of both Dy2S@C82 isomers was elucidated by single-crystal X-ray diffraction. SQUID magnetometry demonstrates that all of these clusterfullerenes exhibit hysteresis of magnetization, with Dy2S@C82-C3v(8) being the strongest single molecule magnet in the series. DC- and AC-susceptibility measurements were used to determine magnetization relaxation times in the temperature range from 1.6 K to 70 K. Unprecedented magnetization relaxation dynamics with three consequent Orbach processes and energy barriers of 10.5, 48, and 1232 K are determined for Dy2S@C82-C3v(8). Dy2S@C82-Cs(6) exhibits faster relaxation of magnetization with two barriers of 15.2 and 523 K. Ab initio calculations were used to interpret experimental data and compare the Dy-sulfide clusterfullerenes to other Dy-clusterfullerenes. The smallest and largest barriers are ascribed to the exchange/dipolar barrier and relaxation via crystal-field states, respectively, whereas an intermediate energy barrier of 48 K in Dy2S@C82-C3v(8) is assigned to the local phonon mode, corresponding to the librational motion of the Dy2S cluster inside the carbon cage.

14.
Nat Commun ; 8: 16098, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28706223

RESUMO

Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y2@C80 and Dy2@C80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy2@C80(CH2Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy2@C80(CH2Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 µB with a dysprosium-electron exchange constant of 32 cm-1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...