Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 264, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650170

RESUMO

The complex architecture of the endoplasmic reticulum (ER) comprises distinct dynamic features, many at the nanoscale, that enable the coexistence of the nuclear envelope, regions of dense sheets and a branched tubular network that spans the cytoplasm. A key player in the formation of ER sheets is cytoskeleton-linking membrane protein 63 (CLIMP-63). The mechanisms by which CLIMP-63 coordinates ER structure remain elusive. Here, we address the impact of S-acylation, a reversible post-translational lipid modification, on CLIMP-63 cellular distribution and function. Combining native mass-spectrometry, with kinetic analysis of acylation and deacylation, and data-driven mathematical modelling, we obtain in-depth understanding of the CLIMP-63 life cycle. In the ER, it assembles into trimeric units. These occasionally exit the ER to reach the plasma membrane. However, the majority undergoes S-acylation by ZDHHC6 in the ER where they further assemble into highly stable super-complexes. Using super-resolution microscopy and focused ion beam electron microscopy, we show that CLIMP-63 acylation-deacylation controls the abundance and fenestration of ER sheets. Overall, this study uncovers a dynamic lipid post-translational regulation of ER architecture.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Cinética , Retículo Endoplasmático/metabolismo , Acilação , Lipídeos
2.
Elife ; 112022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801638

RESUMO

Establishing with precision the quantity and identity of the cell types of the brain is a prerequisite for a detailed compendium of gene and protein expression in the central nervous system (CNS). Currently, however, strict quantitation of cell numbers has been achieved only for the nervous system of Caenorhabditis elegans. Here, we describe the development of a synergistic pipeline of molecular genetic, imaging, and computational technologies designed to allow high-throughput, precise quantitation with cellular resolution of reporters of gene expression in intact whole tissues with complex cellular constitutions such as the brain. We have deployed the approach to determine with exactitude the number of functional neurons and glia in the entire intact larval Drosophila CNS, revealing fewer neurons and more glial cells than previously predicted. We also discover an unexpected divergence between the sexes at this juvenile developmental stage, with the female CNS having significantly more neurons than that of males. Topological analysis of our data establishes that this sexual dimorphism extends to deeper features of CNS organisation. We additionally extended our analysis to quantitate the expression of voltage-gated potassium channel family genes throughout the CNS and uncover substantial differences in abundance. Our methodology enables robust and accurate quantification of the number and positioning of cells within intact organs, facilitating sophisticated analysis of cellular identity, diversity, and gene expression characteristics.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Caenorhabditis elegans , Sistema Nervoso Central/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Neuroglia , Caracteres Sexuais
3.
Netw Neurosci ; 3(3): 725-743, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410376

RESUMO

One of the paramount challenges in neuroscience is to understand the dynamics of individual neurons and how they give rise to network dynamics when interconnected. Historically, researchers have resorted to graph theory, statistics, and statistical mechanics to describe the spatiotemporal structure of such network dynamics. Our novel approach employs tools from algebraic topology to characterize the global properties of network structure and dynamics. We propose a method based on persistent homology to automatically classify network dynamics using topological features of spaces built from various spike train distances. We investigate the efficacy of our method by simulating activity in three small artificial neural networks with different sets of parameters, giving rise to dynamics that can be classified into four regimes. We then compute three measures of spike train similarity and use persistent homology to extract topological features that are fundamentally different from those used in traditional methods. Our results show that a machine learning classifier trained on these features can accurately predict the regime of the network it was trained on and also generalize to other networks that were not presented during training. Moreover, we demonstrate that using features extracted from multiple spike train distances systematically improves the performance of our method.

4.
Phys Rev E ; 97(3-1): 032313, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776117

RESUMO

We propose a method, based on persistent homology, to uncover topological properties of a priori unknown covariates in a system governed by the kinetic Ising model with time-varying external fields. As its starting point the method takes observations of the system under study, a list of suspected or known covariates, and observations of those covariates. We infer away the contributions of the suspected or known covariates, after which persistent homology reveals topological information about unknown remaining covariates. Our motivating example system is the activity of neurons tuned to the covariates physical position and head direction, but the method is far more general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...