Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(7)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38422544

RESUMO

Objective. An algorithm was developed for automated positioning of lattice points within volumetric modulated arc lattice radiation therapy (VMAT LRT) planning. These points are strategically placed within the gross tumor volume (GTV) to receive high doses, adhering to specific separation rules from adjacent organs at risk (OARs). The study goals included enhancing planning safety, consistency, and efficiency while emulating human performance.Approach. A Monte Carlo-based algorithm was designed to optimize the number and arrangement of lattice points within the GTV while considering placement constraints and objectives. These constraints encompassed minimum spacing between points, distance from OARs, and longitudinal separation along thez-axis. Additionally, the algorithm included an objective to permit, at the user's discretion, solutions with more centrally placed lattice points within the GTV. To validate its effectiveness, the automated approach was compared with manually planned treatments for 24 previous patients. Prior to clinical implementation, a failure mode and effects analysis (FMEA) was conducted to identify potential shortcomings.Main results.The automated program successfully met all placement constraints with an average execution time (over 24 plans) of 0.29 ±0.07 min per lattice point. The average lattice point density (# points per 100 c.c. of GTV) was similar for automated (0.725) compared to manual placement (0.704). The dosimetric differences between the automated and manual plans were minimal, with statistically significant differences in certain metrics like minimum dose (1.9% versus 1.4%), D5% (52.8% versus 49.4%), D95% (7.1% versus 6.2%), and Body-GTV V30% (20.7 c.c. versus 19.7 c.c.).Significance.This study underscores the feasibility of employing a straightforward Monte Carlo-based algorithm to automate the creation of spherical target structures for VMAT LRT planning. The automated method yields similar dose metrics, enhances inter-planner consistency for larger targets, and requires fewer resources and less time compared to manual placement. This approach holds promise for standardizing treatment planning in prospective patient trials and facilitating its adoption across centers seeking to implement VMAT LRT techniques.


Assuntos
Algoritmos , Benchmarking , Humanos , Estudos Prospectivos , Método de Monte Carlo , Órgãos em Risco
2.
Phys Med ; 111: 102616, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37311338

RESUMO

PURPOSE: To provide clinical guidance for centers wishing to implement photon spatially fractionated radiation therapy (SFRT) treatments using either a brass grid or volumetric modulated arc therapy (VMAT) lattice approach. METHODS: We describe in detail processes which have been developed over the course of a 3-year period during which our institution treated over 240 SFRT cases. The importance of patient selection, along with aspects of simulation, treatment planning, quality assurance, and treatment delivery are discussed. Illustrative examples involving clinical cases are shown, and we discuss safety implications relevant to the heterogeneous dose distributions. RESULTS: SFRT can be an effective modality for tumors which are otherwise challenging to manage with conventional radiation therapy techniques or for patients who have limited treatment options. However, SFRT has several aspects which differ drastically from conventional radiation therapy treatments. Therefore, the successful implementation of an SFRT treatment program requires the multidisciplinary expertise and collaboration of physicians, physicists, dosimetrists, and radiation therapists. CONCLUSIONS: We have described methods for patient selection, simulation, treatment planning, quality assurance and delivery of clinical SFRT treatments which were built upon our experience treating a large patient population with both a brass grid and VMAT lattice approach. Preclinical research and patient trials aimed at understanding the mechanism of action are needed to elucidate which patients may benefit most from SFRT, and ultimately expand its use.


Assuntos
Neoplasias , Radioterapia de Intensidade Modulada , Humanos , Fracionamento da Dose de Radiação , Neoplasias/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...