Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Microbiol ; 21(10): 632, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37700053
2.
J Virol ; 96(18): e0130522, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094313

RESUMO

Curriculum guidelines for virology are needed to best guide student learning due to the continuous and ever-increasing volume of virology information, the need to ensure that undergraduate and graduate students have a foundational understanding of key virology concepts, and the importance in being able to communicate that understanding to both other virologists and nonvirologists. Such guidelines, developed by virology educators and the American Society for Virology Education and Career Development Committee, are described herein.


Assuntos
Currículo , Universidades , Virologia , Educação de Pós-Graduação , Estados Unidos , Virologia/educação
3.
PLoS Pathog ; 18(9): e1010824, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067270

RESUMO

Nuclear entry represents the final and decisive infection step for most DNA viruses, although how this is accomplished by some viruses is unclear. Polyomavirus SV40 transports from the cell surface through the endosome, the endoplasmic reticulum, and the cytosol from where it enters the nucleus to cause infection. Here we elucidate the nuclear entry mechanism of SV40. Our results show that cytosol-localized SV40 is targeted to the nuclear envelope by directly engaging Nesprin-2 of the linker of nucleoskeleton and cytoskeleton (LINC) nuclear membrane complex. Additionally, we identify the NUP188 subunit of the nuclear pore complex (NPC) as a new Nesprin-2-interacting partner. This physical proximity positions the NPC to capture SV40 upon release from Nesprin-2, enabling the channel to facilitate nuclear translocation of the virus. Strikingly, SV40 disassembles during nuclear entry, generating a viral genome-VP1-VP3 subcomplex that efficiently crosses the NPC to enter the nucleus. Our results reveal how two major nuclear membrane protein complexes are exploited to promote targeting and translocation of a virus into the nucleus.


Assuntos
Poro Nuclear , Vírus , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Membrana Nuclear/metabolismo , Matriz Nuclear
5.
Cell ; 184(26): 6217-6221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34942095

RESUMO

Virtual interviewing has become ubiquitous with the academic job market. Here, we highlight the best practices for candidates and departments to consider when using virtual interviewing. We propose how virtual interviews can be leveraged and adapted for hybrid academic job searches combining virtual and in-person activities in a post-pandemic world.


Assuntos
Emprego , Entrevistas como Assunto , Universidades , COVID-19/epidemiologia , Escolha da Profissão , Docentes , Humanos
6.
Curr Opin Virol ; 50: 171-172, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507100
7.
mSphere ; 6(2)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789943

RESUMO

Chelsey C. Spriggs works in the field of DNA viral entry with a specific interest in virus-host interactions. In this mSphere of Influence article, she reflects on how two papers, "The HCMV assembly compartment is a dynamic Golgi-derived MTOC that controls nuclear rotation and virus spread" (D. J. Procter, A. Banerjee, M. Nukui, K. Kruse, et al., Dev Cell 45:83-100.e7, 2018, https://doi.org/10.1016/j.devcel.2018.03.010) and "Cytoplasmic control of intranuclear polarity by human cytomegalovirus" (D. J. Procter, C. Furey, A. G. Garza-Gongora, S. T. Kosak, D. Walsh, Nature 587:109-114, 2020, https://doi.org/10.1038/s41586-020-2714-x), impacted her research by reinforcing the scientific value in using viruses to understand cell biology.


Assuntos
Biologia Celular , Interações entre Hospedeiro e Microrganismos , Vírus/patogenicidade , COVID-19 , Efeito Citopatogênico Viral , Humanos
9.
J Cell Biol ; 219(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32259203

RESUMO

During entry, viruses must navigate through the host endomembrane system, penetrate cellular membranes, and undergo capsid disassembly to reach an intracellular destination that supports infection. How these events are coordinated is unclear. Here, we reveal an unexpected function of a cellular motor adaptor that coordinates virus membrane penetration and disassembly. Polyomavirus SV40 traffics to the endoplasmic reticulum (ER) and penetrates a virus-induced structure in the ER membrane called "focus" to reach the cytosol, where it disassembles before nuclear entry to promote infection. We now demonstrate that the ER focus is constructed proximal to the Golgi-associated BICD2 and BICDR1 dynein motor adaptors; this juxtaposition enables the adaptors to directly bind to and disassemble SV40 upon arrival to the cytosol. Our findings demonstrate that positioning of the virus membrane penetration site couples two decisive infection events, cytosol arrival and disassembly, and suggest cargo remodeling as a novel function of dynein adaptors.


Assuntos
Retículo Endoplasmático/genética , Complexo de Golgi/genética , Interações Hospedeiro-Patógeno/genética , Polyomavirus/genética , Animais , Transporte Biológico/genética , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/virologia , Citosol/metabolismo , Citosol/virologia , Endocitose/genética , Retículo Endoplasmático/virologia , Complexo de Golgi/virologia , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Polyomavirus/patogenicidade , Internalização do Vírus
10.
Adv Virus Res ; 104: 97-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31439154

RESUMO

Viruses must navigate the complex endomembranous network of the host cell to cause infection. In the case of a non-enveloped virus that lacks a surrounding lipid bilayer, endocytic uptake from the plasma membrane is not sufficient to cause infection. Instead, the virus must travel within organelle membranes to reach a specific cellular destination that supports exposure or arrival of the virus to the cytosol. This is achieved by viral penetration across a host endomembrane, ultimately enabling entry of the virus into the nucleus to initiate infection. In this review, we discuss the entry mechanisms of three distinct non-enveloped DNA viruses-adenovirus (AdV), human papillomavirus (HPV), and polyomavirus (PyV)-highlighting how each exploit different intracellular transport machineries and membrane penetration apparatus associated with the endosome, Golgi, and endoplasmic reticulum (ER) membrane systems to infect a host cell. These processes not only illuminate a highly-coordinated interplay between non-enveloped viruses and their host, but may provide new strategies to combat non-enveloped virus-induced diseases.


Assuntos
Adenoviridae/fisiologia , Interações Hospedeiro-Patógeno , Papillomaviridae/fisiologia , Polyomavirus/fisiologia , Internalização do Vírus , Endocitose , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Endossomos/metabolismo , Endossomos/virologia , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Humanos
11.
Int J Gynecol Pathol ; 38(1): 1-10, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29995652

RESUMO

Human papillomaviruses (HPVs) are DNA viruses with epithelial tropism. High-risk types of HPV are the causative agents of the majority of cervical cancers and are responsible for a number of other anogenital as well as oropharyngeal cancers. The life cycle of HPV is closely linked to the differentiation state of its host cell and is dependent on the activation of specific pathways of the DNA damage response. Several proteins from the ataxia telangiectasia mutated and the ataxia telangiectasia mutated and Rad3-related DNA repair pathways, which are essential for maintaining genomic stability in cells, are upregulated in HPV-positive cells and are required for viral replication. Our studies examine the expression of 5 such DNA repair factors-pCHK2, pCHK1, FANCD2, BRCA1, and H2AX-in cervical specimens from patients diagnosed with low-grade, intermediate-grade, or high-grade lesions. The percentage of cells expressing pCHK2, pCHK1, FANCD2, and BRCA1 is significantly higher in high-grade squamous intraepithelial lesions compared with that of either low-grade squamous intraepithelial lesions or normal tissue, particularly in differentiated cell layers. In addition, the distribution of this staining throughout the epithelium is altered with increasing lesion grade. This study characterizes the expression of pCHK2, pCHK1, FANCD2, H2AX and BRCA1 during cervical cancer progression and provides additional insight into the role of these DNA damage response proteins in viral transformation.


Assuntos
Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/diagnóstico , Displasia do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Diferenciação Celular , Colo do Útero/metabolismo , Colo do Útero/patologia , Colo do Útero/virologia , Dano ao DNA , Reparo do DNA , Progressão da Doença , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Papillomaviridae/genética , Papillomaviridae/fisiologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Sensibilidade e Especificidade , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Replicação Viral , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/virologia
12.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29593037

RESUMO

During entry, polyomavirus (PyV) is endocytosed and sorts to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol. From the cytosol, the virus moves to the nucleus to cause infection. How PyV is transported from the cytosol into the nucleus, a crucial infection step, is unclear. We found that upon reaching the cytosol, the archetypal PyV simian virus 40 (SV40) recruits the cytoplasmic dynein motor, which disassembles the viral particle. This reaction enables the resulting disassembled virus to enter the nucleus to promote infection. Our findings reveal how a cytosolic motor can be hijacked to impart conformational changes to a viral particle, a process essential for successful infection.IMPORTANCE How a nonenveloped virus successfully traffics from the cell surface to the nucleus to cause infection remains enigmatic in many instances. In the case of the nonenveloped PyV, the viral particle is sorted from the plasma membrane to the ER and then the cytosol, from which it enters the nucleus to promote infection. The molecular mechanism by which PyV reaches the nucleus from the cytosol is not entirely clear. Here we demonstrate that the prototype PyV SV40 recruits dynein upon reaching the cytosol. Importantly, this cellular motor disassembles the viral particle during cytosol-to-nucleus transport to cause infection.


Assuntos
Citosol/virologia , Dineínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Vírus 40 dos Símios/patogenicidade , Animais , Células COS , Linhagem Celular , Núcleo Celular/virologia , Chlorocebus aethiops , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Vírus 40 dos Símios/química , Vírus 40 dos Símios/fisiologia , Internalização do Vírus
13.
Viruses ; 9(8)2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820495

RESUMO

High-risk human papillomaviruses (HPVs) are the causative agents of cervical and other genital cancers. In addition, HPV infections are associated with the development of many oropharyngeal cancers. HPVs activate and repress a number of host cellular pathways to promote their viral life cycles, including those of the DNA damage response. High-risk HPVs activate the ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) DNA damage repair pathways, which are essential for viral replication (particularly differentiation-dependent genome amplification). These DNA repair pathways are critical in maintaining host genomic integrity and stability and are often dysregulated or mutated in human cancers. Understanding how these pathways contribute to HPV replication and transformation may lead to the identification of new therapeutic targets for the treatment of existing HPV infections.


Assuntos
Dano ao DNA , Papillomaviridae/fisiologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Replicação Viral , Animais , Reparo do DNA , Interações Hospedeiro-Patógeno , Humanos , Papillomaviridae/genética
14.
mBio ; 8(1)2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196964

RESUMO

The life cycle of human papillomavirus (HPV) is dependent on the differentiation state of its host cell. HPV genomes are maintained as low-copy episomes in basal epithelial cells and amplified to thousands of copies per cell in differentiated layers. Replication of high-risk HPVs requires the activation of the ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) DNA repair pathways. The Fanconi anemia (FA) pathway is a part of the DNA damage response and mediates cross talk between the ATM and ATR pathways. Our studies show that HPV activates the FA pathway, leading to the accumulation of a key regulatory protein, FANCD2, in large nuclear foci. These HPV-dependent foci colocalize with a distinct population of DNA repair proteins, including ATM components γH2AX and BRCA1, but infrequently with p-SMC1, which is required for viral genome amplification in differentiated cells. Furthermore, FANCD2 is found at viral replication foci, where it is preferentially recruited to viral genomes compared to cellular chromosomes and is required for maintenance of HPV episomes in undifferentiated cells. These findings identify FANCD2 as an important regulator of HPV replication and provide insight into the role of the DNA damage response in the differentiation-dependent life cycle of HPV.IMPORTANCE High-risk human papillomaviruses (HPVs) are the etiological agents of cervical cancer and are linked to the development of many other anogenital and oropharyngeal cancers. Identification of host cellular pathways involved in regulating the viral life cycle may be helpful in identifying treatments for HPV lesions. Mutations in genes of the Fanconi anemia (FA) DNA repair pathway lead to genomic instability in patients and a predisposition to HPV-associated malignancies. Our studies demonstrate that FA pathway component FANCD2 is recruited to HPV DNA, associates with members of the ATM DNA repair pathway, and is essential for the maintenance of viral episomes in basal epithelial cells. Disruption of the FA pathway may result in increased integration events and a higher incidence of HPV-related cancer. Our study identifies new links between HPV and the FA pathway that may help to identify new therapeutic targets for the treatment of existing HPV infections and cancers.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Regulação da Expressão Gênica , Genoma Viral , Papillomaviridae/fisiologia , Infecções por Papillomavirus/genética , Replicação Viral , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Reparo do DNA , Anemia de Fanconi/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/virologia , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...