Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 10(4)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641442

RESUMO

Deoxynivalenol (DON) is one of the most prevalent mycotoxins, contaminating cereals and cereal-derived products. Its derivative deepoxy-deoxynivalenol (DOM-1) is produced by certain bacteria, which either occur naturally or are supplemented in feed additive. DON-induced impairments in protein synthesis are particularly problematic for highly proliferating immune cells. This study provides the first comparison of the effects of DON and DOM-1 on the concanavalin A-induced proliferation of porcine, chicken, and bovine peripheral blood mononuclear cells (PBMCs). Therefore, isolated PBMCs were treated with DON (0.01-3.37 µM) and DOM-1 (1.39-357 µM) separately, and proliferation was measured using a bromodeoxyuridine (BrdU) assay. Although pigs are considered highly sensitive to DON, the present study revealed a substantially higher sensitivity of bovine (IC50 = 0.314 µM) PBMCs compared to chicken (IC50 = 0.691 µM) and porcine (IC50 = 0.693 µM) PBMCs. Analyses on the proliferation of bovine T-cell subsets showed that all major subsets, namely, CD4⁺, CD8ß⁺, and γδ T cells, were affected to a similar extent. In contrast, DOM-1 did not affect bovine PBMCs, but reduced the proliferation of chicken and porcine PBMCs at the highest tested concentration (357 µM). Results confirm the necessity of feed additives containing DON-to-DOM-1-transforming bacteria and highlights species-specific differences in the DON sensitivity of immune cells.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Concanavalina A , Aves Domésticas , Suínos
2.
Mycotoxin Res ; 33(4): 297-308, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28741250

RESUMO

Deoxynivalenol (DON), a trichothecene produced by various Fusarium species, is one of the most prevalent food- and feed-associated mycotoxins. The effects of DON and deepoxy-deoxynivalenol (DOM-1) were assessed in five different cell lines from different tissues and species starting from the first line of defense, the trout gill (RTgill-W1) and pig intestinal cells (IPEC-1 and IPEC-J2) over immune cells, as second line of defense (mouse macrophages RAW 264.7) to human liver cells (HepG2). Viability was assessed with a WST-1 assay, except for RTgill-W1, where a neutral red (NR) and sulforhodamine B (SRB) assay was performed. Additionally, more sensitive parameters, such as interleukin-, nitric oxide (NO)-, and albumin-release were determined. Viability was affected by DON at concentrations starting at 10 µmol/L (RTgill-W1), 0.9 µmol/L (IPEC-1), 3.5 µmol/L (IPEC-J2), and 0.9 µmol/L (HepG2), whereas DOM-1 did not have such an effect. Additionally, NO was decreased (0.84 µmol/L DON), whereas interleukin (IL)-6 was increased (0.42 µmol/L DON) in lipopolysaccharide (LPS)-stimulated DON-, but not DOM-1-treated RAW cells. Tumor necrosis factor (TNF)-α release, however, was not affected. Interestingly, albumin secretion of HepG2 cells was decreased by both DON and DOM-1 but at a much higher concentration for DOM-1 (228 versus 0.9 µmol/L for DON). 98.9% of DOM-1 was retrieved by liquid chromatography tandem mass spectrometry at the end of the experiment, proving its stability. In this study, IL-6 was the most sensitive parameter, followed by NO and albumin release and viability for HepG2 and IPEC-1.


Assuntos
Micotoxinas/farmacologia , Tricotecenos/farmacologia , Animais , Biotransformação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Citocinas/análise , Humanos , Camundongos , Micotoxinas/metabolismo , Suínos , Espectrometria de Massas em Tandem , Tricotecenos/metabolismo , Truta
3.
Mycotoxin Res ; 33(1): 25-37, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27817099

RESUMO

The mycotoxin deoxynivalenol (DON) contaminates agricultural commodities worldwide, posing health threats to humans and animals. Associated with DON are derivatives, such as deepoxy-deoxynivalenol (DOM-1), produced by enzymatic transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Using differentiated porcine intestinal epithelial cells (IPEC-J2), we provide the first multi-parameter comparative cytotoxicity analysis of DON and DOM-1, based on the parallel evaluation of lysosomal activity, total protein content, membrane integrity, mitochondrial metabolism and ATP synthesis. The study investigated the ability of DON and-for the first time of its metabolite DOM-1-to induce apoptosis, mitogen-activated protein kinase (MAPK) signalling, oxidative events and alterations of mitochondrial structure in porcine intestinal epithelial cells (IECs). The degree of DON toxicity strongly varied, depending on the cytotoxicity parameter evaluated. DON compromised viability according to the parameters of lysosomal activity, total protein content and membrane integrity, but increased viability according to assays based on mitochondrial metabolism and ATP synthesis. DON induced expression of cleaved caspase-3 (maximum induction 3.9-fold) and MAPK p38 and p42/p44 (maximum induction 2.51- and 2.30-fold, respectively). DON altered mitochondrial morphology, but did not increase intracellular ROS. DOM-1-treated IPEC-J2 remained unaffected at equimolar concentrations in all assays, thereby confirming the safety of feed additives using DON- to DOM-1-transforming bacteria. The study additionally highlights that an extensive multi-parameter analysis significantly contributes to the quality of in vitro data.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Micotoxinas/toxicidade , Tricotecenos/toxicidade , Animais , Apoptose , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Transdução de Sinais/efeitos dos fármacos , Suínos
4.
Toxins (Basel) ; 8(11)2016 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-27869761

RESUMO

The human, animal and plant pathogen Fusarium, which contaminates agricultural commodities worldwide, produces numerous secondary metabolites. An example is the thoroughly-investigated deoxynivalenol (DON), which severely impairs gastrointestinal barrier integrity. However, to date, the toxicological profile of other Fusarium-derived metabolites, such as enniatins, beauvericin, moniliformin, apicidin, aurofusarin, rubrofusarin, equisetin and bikaverin, are poorly characterized. Thus we examined their effects-as metabolites alone and as metabolites in combination with DON-on the intestinal barrier function of differentiated intestinal porcine epithelial cells (IPEC-J2) over 72 h. Transepithelial electrical resistance (TEER) was measured at 24-h intervals, followed by evaluation of cell viability using neutral red (NR) assay. Enniatins A, A1, B and B1, apicidin, aurofusarin and beauvericin significantly reduced TEER. Moniliformin, equisetin, bikaverin and rubrofusarin had no effect on TEER. In the case of apicidin, aurofusarin and beauvericin, TEER reductions were further substantiated by the addition of otherwise no-effect DON concentrations. In all cases, viability was unaffected, confirming that TEER reductions were not due to compromised viability. Considering the prevalence of mycotoxin contamination and the diseases associated with intestinal barrier disruption, consumption of contaminated food or feed may have substantial health implications.


Assuntos
Células Epiteliais/efeitos dos fármacos , Fusarium/metabolismo , Mucosa Intestinal/citologia , Micotoxinas/toxicidade , Animais , Linhagem Celular , Suínos
5.
Toxins (Basel) ; 8(9)2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27618100

RESUMO

Deoxynivalenol (DON), produced by the plant pathogens Fusarium graminearum and Fusarium culmorum, is one of the most common mycotoxins, contaminating cereal and cereal-derived products. Although worldwide contamination of food and feed poses health threats to humans and animals, pigs are particularly susceptible to this mycotoxin. DON derivatives, such as deepoxy-deoxynivalenol (DOM-1), are produced by bacterial transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Intestinal epithelial cells are the initial barrier against these food- and feed-borne toxins. The present study confirms DON-induced activation of MAPK p44/42 and inhibition of p44/42 by MAPK-inhibitor U0126 monoethanolate. Influence of DON and DOM-1 on transepithelial electrical resistance (TEER), viability and expression of seven tight junction proteins (TJ), as well as the potential of U0126 to counteract DON-induced effects, was assessed. While DOM-1 showed no effect, DON significantly reduced TEER of differentiated IPEC-J2 and decreased expression of claudin-1 and -3, while leaving claudin-4; ZO-1, -2, and -3 and occludin unaffected. Inhibition of p44/42 counteracted DON-induced TEER decrease and restored claudin-3, but not claudin-1 expression. Therefore, effects of DON on TEER and claudin-3 are at least partially p44/42 mediated, while effects on viability and claudin-1 are likely mediated via alternative pathways.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Junções Íntimas/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Impedância Elétrica , Ativação Enzimática , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Permeabilidade , Inibidores de Proteínas Quinases/farmacologia , Suínos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/enzimologia , Junções Íntimas/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA