Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(39): 19336-19341, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31488715

RESUMO

Biomass burning (BB) emits enormous amounts of aerosol particles and gases into the atmosphere and thereby significantly influences regional air quality and global climate. A dominant particle type from BB is spherical organic aerosol particles commonly referred to as tarballs. Currently, tarballs can only be identified, using microscopy, from their uniquely spherical shapes following impaction onto a grid. Despite their abundance and potential significance for climate, many unanswered questions related to their formation, emission inventory, removal processes, and optical properties still remain. Here, we report analysis that supports tarball formation in which primary organic particles undergo chemical and physical processing within ∼3 h of emission. Transmission electron microscopy analysis reveals that the number fractions of tarballs and the ratios of N and O relative to K, the latter a conserved tracer, increase with particle age and that the more-spherical particles on the substrates had higher ratios of N and O relative to K. Scanning transmission X-ray spectrometry and electron energy loss spectrometry analyses show that these chemical changes are accompanied by the formation of organic compounds that contain nitrogen and carboxylic acid. The results imply that the chemical changes increase the particle sphericity on the substrates, which correlates with particle surface tension and viscosity, and contribute to tarball formation during aging in BB smoke. These findings will enable models to better partition tarball contributions to BB radiative forcing and, in so doing, better help constrain radiative forcing models of BB events.


Assuntos
Poluentes Atmosféricos/química , Biomassa , Material Particulado/química , Fumaça/análise , Alcatrões/química , Aerossóis/química , Clima , Compostos Orgânicos/análise , Tensão Superficial , Viscosidade
2.
Nat Commun ; 10(1): 1046, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837467

RESUMO

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model. Simulations show that emissions of nitrogen-oxides from Manaus, a city of ~2 million people, greatly enhance production of biogenic SOA by 60-200% on average with peak enhancements of 400%, through the increased oxidation of gas-phase organic carbon emitted by the forests. Simulated enhancements agree with aircraft measurements, and are much larger than those reported over other locations. The implication is that increasing anthropogenic emissions in the future might substantially enhance biogenic SOA in pristine locations like the Amazon.

3.
Sci Adv ; 4(4): eaar2547, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651460

RESUMO

Nitrogen oxides (NO x ) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NO x concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NO x concentrations at a single observation site is often not wide. Concentrations of isoprene and its photo-oxidation products were used to infer the equivalent noontime OH concentrations. The fetch at an observation site in central Amazonia experienced varied contributions from background regional air, urban pollution, and biomass burning. The afternoon concentrations of reactive nitrogen oxides (NO y ), indicative of NO x exposure during the preceding few hours, spanned from 0.3 to 3.5 parts per billion. Accompanying the increase of NO y concentration, the inferred equivalent noontime OH concentrations increased by at least 250% from 0.6 × 106 to 1.6 × 106 cm-3. The conclusion is that, compared to background conditions of low NO x concentrations over the Amazon forest, pollution increased NO x concentrations and amplified OH concentrations, indicating the susceptibility of the atmospheric oxidation capacity over the forest to anthropogenic influence and reinforcing the important role of NO x in sustaining OH concentrations.

4.
Nature ; 539(7629): 416-419, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27776357

RESUMO

The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.


Assuntos
Aerossóis/análise , Chuva , Aerossóis/química , Biomassa , Brasil , Incêndios , Tamanho da Partícula , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
5.
Proc Natl Acad Sci U S A ; 113(22): 6125-30, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185928

RESUMO

Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.


Assuntos
Poluentes Atmosféricos/análise , Butadienos/química , Radicais Livres/análise , Hemiterpenos/química , Óxido Nítrico/química , Pentanos/química , Fotoquímica , Floresta Úmida , Acroleína/análogos & derivados , Acroleína/análise , Atmosfera , Butadienos/efeitos da radiação , Butanonas/análise , Hemiterpenos/efeitos da radiação , Humanos , Oxirredução , Pentanos/efeitos da radiação , Peróxidos/química
6.
Anal Chem ; 75(17): 4696-700, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-14632084

RESUMO

The hydroperoxyl radical (HO2) is one of the most abundant free radicals in the atmosphere, where it participates in a series of photochemical reactions that determine the fate of natural and anthropogenic emissions. In addition, HO2 is found in droplets and surface water as a result of photochemical formation and gas-phase scavenging. We describe a quantitative method for determining trace concentrations of HO2 radicals that exploits the chemiluminescence produced upon reaction with a synthetic analogue of luciferin from the crustacean Cypridina. The technique is linear at least up to 1 microM HO2(aq) and has a minimum detection limit of 0.1 nM. A unique feature of this analysis is a calibration method using stable aqueous HO2 standards produced in submicromolar concentrations using 60Co gamma-radiolysis. The advantage of this method in comparison to others in consideration of field deployment is its simplicity, low cost, and minimal size and power requirements. One intended application of this technique is the measurement of atmospheric HO2 radicals following collection into aqueous solution.


Assuntos
Análise de Injeção de Fluxo/métodos , Peróxidos/análise , Peróxidos/química , Animais , Atmosfera/química , Calibragem , Crustáceos/química , Luciferina de Vaga-Lumes/síntese química , Luciferina de Vaga-Lumes/química , Meia-Vida , Concentração de Íons de Hidrogênio , Medições Luminescentes , Oxirredução , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...