Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plants (Basel) ; 12(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960138

RESUMO

Oats (Avena sativa) hold immense economic and nutritional value as a versatile crop. They have long been recognized as an exceptional choice for human consumption and animal feed. Oats' unique components, including proteins, starches, and ß-glucans, have led to its widespread use in various food products such as bread, noodles, flakes, and milk. The popularity of oat milk as a vegan alternative to dairy milk has soared due to the increasing number of vegetarians/vegans and growing environmental awareness. Oat milk offers a sustainable option with reduced greenhouse gas emissions during its production, rendering it an appropriate choice for individuals who are lactose-intolerant or have dairy allergies. To ensure improved adaptability and enhanced nutrition, the development of new oat varieties is crucial, considering factors like cultivation, climate, and growing conditions. Plant cell culture plays a crucial role in both traditional and contemporary breeding methods. In classical breeding, plant cell culture facilitates the rapid production of double haploid plants, which can be employed to accelerate the breeding process. In modern breeding methods, it enables genetic manipulation and precise genome editing at the cellular level. This review delves into the importance of oats and their diverse applications, highlighting the advantages of plant cell culture in both classical and modern breeding methods. Specifically, it provides an overview of plant tissue culture, encompassing genetic transformation, haploid technology, protoplast technology, and genome editing.

3.
Front Plant Sci ; 14: 1111110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123849

RESUMO

Root chicory (Cichorium intybus L. var. sativum) is used to extract inulin, a fructose polymer used as a natural sweetener and prebiotic. However, bitter tasting sesquiterpene lactones, giving chicory its known flavour, need to be removed during inulin extraction. To avoid this extraction and associated costs, recently chicory variants with a lower sesquiterpene lactone content were created by inactivating the four copies of the germacrene A synthase gene (CiGAS-S1, -S2, -S3, -L) which encode the enzyme initiating bitter sesquiterpene lactone biosynthesis in chicory. In this study, different delivery methods for CRISPR/Cas9 reagents have been compared regarding their efficiency to induce mutations in the CiGAS genes, the frequency of off-target mutations as well as their environmental and economic impacts. CRISPR/Cas9 reagents were delivered by Agrobacterium-mediated stable transformation or transient delivery by plasmid or preassembled ribonucleic complexes (RNPs) using the same sgRNA. All methods used lead to a high number of INDEL mutations within the CiGAS-S1 and CiGAS-S2 genes, which match the used sgRNA perfectly; additionally, the CiGAS-S3 and CiGAS-L genes, which have a single mismatch with the sgRNA, were mutated but with a lower mutation efficiency. While using both RNPs and plasmids delivery resulted in biallelic, heterozygous or homozygous mutations, plasmid delivery resulted in 30% of unwanted integration of plasmid fragments in the genome. Plants transformed via Agrobacteria often showed chimerism and a mixture of CiGAS genotypes. This genetic mosaic becomes more diverse when plants were grown over a prolonged period. While the genotype of the on-targets varied between the transient and stable delivery methods, no off-target activity in six identified potential off-targets with two to four mismatches was found. The environmental impacts (greenhouse gas (GHG) emissions and primary energy demand) of the methods are highly dependent on their individual electricity demand. From an economic view - like for most research and development activities - employment and value-added multiplier effects are high; particularly when compared to industrial or manufacturing processes. Considering all aspects, we conclude that using RNPs is the most suitable method for genome editing in chicory since it led to a high efficiency of editing, no off-target mutations, non-transgenic plants with no risk of unwanted integration of plasmid DNA and without needed segregation of transgenes.

4.
Front Genome Ed ; 4: 899331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120531

RESUMO

The agricultural biotechnology world has been divided into two blocks; countries adopting GM crops for commercial cultivation (adopters) and others without any or without relevant cultivation of such crops (non-adopters). Meanwhile, an increasing number of adopter countries have exempted certain genome-edited (GE) crops from legal GMO pre-market approval and labelling requirements. Among them are major exporters of agricultural commodities such as United States, Canada, and Australia. Due to the relaxed legislation more GE plants are expected to enter the market soon. Many countries in the non-adopter group, however, depend on import of large volumes of agricultural commodities from adopter countries. Unlike first generation GM, certain GE crops cannot be identified as unambiguously originating from genome editing using available techniques. Consequently, pressure is mounting on non-adopter jurisdictions to reconsider their policies and legislations. Against this backdrop, the paper explores recent developments relevant for social acceptability in selected non-adopters, Japan, New Zealand, the EU, Norway, and Switzerland in contrast to United States, Canada, and Australia. While Japan is already opening-up and Norway and Switzerland are discussing revisions of their policies, the EU and New Zealand are struggling with challenges resulting from high court decisions. In an attempt to take a closer look into the inner dynamics of these developments, the concept of social acceptability proposed by Wüstenhagen et al. (Energy Policy, 2007, 35(5), 2683-2691) is employed. This aids the understanding of developments in the jurisdictions considered and identifies specific or cross-cutting challenges.

5.
Plant Physiol ; 190(3): 1579-1587, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35976141

RESUMO

A decade ago, the CRISPR/Cas system has been adapted for genome editing. Since then, hundreds of organisms have been altered using genome editing and discussions were raised on the regulatory status of genome edited organisms esp. crops. To date, many countries have made decisions on the regulatory status of products of genome editing, by exempting some kinds of edits from the classical GMO regulation. However, the guidance differs between countries even in the same region. Several countries are still debating the issue or are in the progress of updating guidance and regulatory systems to cover products of genome editing. The current global situation of different regulatory systems is putting a harmonized framework on genome-edited crops in the far future. In this update, we summarize the current developments in the field of regulation concerning edited crops and present a short insight into perception of genome editing in the society.


Assuntos
Edição de Genes , Genoma de Planta , Genoma de Planta/genética , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Políticas
6.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502253

RESUMO

In the past, major findings in meiosis have been achieved, but questions towards the global understanding of meiosis remain concealed. In plants, one of these questions covers the need for two diverse meiotic active SPO11 proteins. In Arabidopsis and other plants, both meiotic SPO11 are indispensable in a functional form for double strand break induction during meiotic prophase I. This stands in contrast to mammals and fungi, where a single SPO11 is present and sufficient. We aimed to investigate the specific function and evolution of both meiotic SPO11 paralogs in land plants. By performing immunostaining of both SPO11-1 and -2, an investigation of the spatiotemporal localization of each SPO11 during meiosis was achieved. We further exchanged SPO11-1 and -2 in Arabidopsis and could show a species-specific function of the respective SPO11. By additional changes of regions between SPO11-1 and -2, a sequence-specific function for both the SPO11 proteins was revealed. Furthermore, the previous findings about the aberrant splicing of each SPO11 were refined by narrowing them down to a specific developmental phase. These findings let us suggest that the function of both SPO11 paralogs is highly sequence specific and that the orthologs are species specific.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Endodesoxirribonucleases/genética , Splicing de RNA/genética , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/fisiologia , Meiose/fisiologia , Rad51 Recombinase/metabolismo , Recombinação Genética , Especificidade da Espécie
7.
Front Plant Sci ; 11: 574959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329634

RESUMO

CRISPR/Cas enables a targeted modification of DNA sequences. Despite their ease and efficient use, one limitation is the potential occurrence of associated off-target effects. This systematic review aims to answer the following research question: Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas in plants? Literature published until March 2019 was considered for this review. Articles were screened for relevance based on pre-defined inclusion criteria. Relevant studies were subject to critical appraisal. All studies included in the systematic review were synthesized in a narrative report, but studies rated as high and medium/high validity were reported separately from studies rated as low and medium/low or unclear validity. In addition, we ran a binary logistic regression analysis to verify five factors that may affect the occurrence of off-target effects: (1) Number of mismatches (2) Position of mismatches (3) GC-content of the targeting sequence (4) Altered nuclease variants (5) Delivery methods. In total, 180 relevant articles were included in this review containing 468 studies therein. Seventy nine percentage of these studies were rated as having high or medium/high validity. Within these studies, 6,416 potential off-target sequences were assessed for the occurrence of off-target effects. Results clearly indicate that an increased number of mismatches between the on-target and potential off-target sequence steeply decreases the likelihood of off-target effects. The observed rate of off-target effects decreased from 59% when there is one mismatch between the on-target and off-target sequences toward 0% when four or more mismatches exist. In addition, mismatch/es located within the first eight nucleotides proximal to the PAM significantly decreased the occurrence of off-target effects. There is no evidence that the GC-content significantly affects off-target effects. The database regarding the impact of the nuclease variant and the delivery method is very poor as the majority of studies applied the standard nuclease SpCas9 and the CRISPR/Cas system was stably delivered in the genome. Hence, a general significant impact of these two factors on the occurrence of off-target effects cannot be proved. This identified evidence gap needs to be filled by systematic studies exploring these individual factors in sufficient numbers.

8.
Front Plant Sci ; 11: 586027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163013

RESUMO

Products of genome editing as the most promising "New Plant Breeding Technology" (NPBT) have made the transition from the lab to the market in a short time. Globally, research activities employing genome editing are constantly expanding and more and more plants with market-oriented traits are being developed, and companies have already released the first genome edited crops to the market. Few countries, most of which are located in the Americas, have adapted legislations to these technologies or released guidelines supporting the use of genome editing. Other countries are debating the path to come either because there is no clarity on the legal classification or due consensus is hampered by a renewed GMO debate. In recent years (2017-2020), eight countries have introduced guidelines clarifying the legal status of genome edited products and many of those are actively committed to international harmonization of their policies. In this publication we give an overview on the current and potentially future international regulatory environment and an update on plants derived by genome editing with market-oriented traits.

9.
Front Plant Sci ; 11: 584485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014005

RESUMO

The European Commission has asked EU Member States for comments on a French law notification demanding plant varieties produced with the help of in vitro mutagenesis have to be eliminated from the national catalog of approved varieties because of missing legal authorization deemed required by genetic engineering law. Primary target are herbicide-tolerant Clearfield oilseed rape varieties. The scientific reasoning is questionable, traceability is illusive, and law enforcement is likely to be impossible.

11.
Curr Opin Biotechnol ; 61: 1-6, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31557656

RESUMO

The application of site directed nucleases (SDN) for Genome Editing (GE) in plant breeding and research increases exponentially in the last few years. The main research so far was on 'proof of concept' studies or improvement of the precision and delivery of the SDN. Nevertheless, a reasonable amount of research is present on market-oriented applications for cash crops such as rice but also for commercially lesser interesting crops and vegetables. Reported field trials involving GE plants are scarce around the world and almost not existing in Europe. This is due to the regulatory landscape for GE plants, which is quite distinct and especially in the European Union very demanding. By far the most field trials involve GE rice varieties in the Asian area, followed up by tomato and other vegetables and crops.


Assuntos
Produtos Agrícolas/genética , Genoma de Planta , Europa (Continente) , Edição de Genes , Plantas Geneticamente Modificadas/genética
12.
Front Plant Sci ; 10: 236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930911

RESUMO

Conventional genetic engineering techniques generate modifications in the genome via stable integration of DNA elements which do not occur naturally in this combination. Therefore, the resulting organisms and (most) products thereof can unambiguously be identified with event-specific PCR-based methods targeting the insertion site. New breeding techniques such as genome editing diversify the toolbox to generate genetic variability in plants. Several of these techniques can introduce single nucleotide changes without integrating foreign DNA and thereby generate organisms with intended phenotypes. Consequently, such organisms and products thereof might be indistinguishable from naturally occurring or conventionally bred counterparts with established analytical tools. The modifications can entirely resemble random mutations regardless of being spontaneous or induced chemically or via irradiation. Therefore, if an identification of these organisms or products thereof is demanded, a new challenge will arise for (official) seed, food, and feed testing laboratories and enforcement institutions. For detailed consideration, we distinguish between the detection of sequence alterations - regardless of their origin - the identification of the process that generated a specific modification and the identification of a genotype, i.e., an organism produced by genome editing carrying a specific genetic alteration in a known background. This article briefly reviews the existing and upcoming detection and identification strategies (including the use of bioinformatics and statistical approaches) in particular for plants developed with genome editing techniques.

13.
Annu Rev Plant Biol ; 70: 699-726, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30822113

RESUMO

This review describes the current status and future challenges of risk assessment and regulation of plants modified by modern biotechniques, namely genetic engineering and genome editing. It provides a general overview of the biosafety and regulation of genetically modified plants and details different regulatory frameworks with a focus on the European situation. The environmental risk and safety assessment of genetically modified plants is explained, and aspects of toxicological assessments are discussed, especially the controversial debate in Europe on the added scientific value of untargeted animal feeding studies. Because RNA interference (RNAi) is increasingly explored for commercial applications, the risk and safety assessment of RNAi-based genetically modified plants is also elucidated. The production, detection, and identification of genome-edited plants are described. Recent applications of modern biotechniques, namely synthetic biology and gene drives, are discussed, and a short outlook on the future follows.


Assuntos
Edição de Genes , Animais , Plantas Geneticamente Modificadas , Medição de Risco
14.
New Phytol ; 222(3): 1652-1661, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30847946

RESUMO

Visualising the spatio-temporal organisation of the genome will improve our understanding of how chromatin structure and function are intertwined. We developed a tool to visualise defined genomic sequences in fixed nuclei and chromosomes based on a two-part guide RNA with a recombinant Cas9 endonuclease complex. This method does not require any special construct or transformation method. In contrast to classical fluorescence in situ hybridiaztion, RGEN-ISL (RNA-guided endonuclease - in situ labelling) does not require DNA denaturation, and therefore permits a better structural chromatin preservation. The application of differentially labelled trans-activating crRNAs allows the multiplexing of RGEN-ISL. Moreover, this technique is combinable with immunohistochemistry. Real-time visualisation of the CRISPR/Cas9-mediated DNA labelling process revealed the kinetics of the reaction. The broad range of adaptability of RGEN-ISL to different temperatures and combinations of methods has the potential to advance the field of chromosome biology.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Endonucleases/metabolismo , Genômica , RNA Guia de Cinetoplastídeos/metabolismo , Coloração e Rotulagem , Sequência de Bases , Centrômero/metabolismo , Especificidade da Espécie
15.
Front Plant Sci ; 10: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723483

RESUMO

As plants are sessile they need a very efficient system for repairing damage done by external or internal mutagens to their DNA. Mismatch repair (MMR) is one of the systems that maintain genome integrity and prevent homeologous recombination. In all eukaryotes mismatches are recognized by evolutionary conserved MSH proteins often acting as heterodimers, the constant component of which is MSH2. Changes affecting the function of MSH2 gene may induce a 'mutator' phenotype and microsatellite instability (MSI), as is demonstrated in MSH2 knock-out and silenced lines of Arabidopsis thaliana. The goal of this study was to screen for 'mutator' phenotypes in somatic hybrids between potato cvs. 'Delikat' and 'Désirée' and MMR deficient Solanum chacoense transformed using antisense (AS) or dominant negative mutant (DN) AtMSH2 genes. The results demonstrate that first generation fusion hybrids have a range of morphological abnormalities caused by uniparental MMR deficiency; these mutant phenotypes include: dwarf or gigantic plants; bushiness; curled, small, large or abnormal leaves; a deterioration in chloroplast structure; small deep-purple tubers and early dehiscent flowers. Forty percent of the viable somatic hybrids planted in a greenhouse, (10 out of 25 genotypes) had mutant phenotypes accompanied by MSI. The majority of the hybrids with 'mutator' phenotypes cultured on media containing kanamycin developed roots so sustaining the presence of selectable marker gene nptII, from the initial constructs. Here for the first time, MMR deficiency combined with somatic hybridization, are used to induce new phenotypes in plants, which supports the role of MMR deficiency in increasing introgressions between two related species.

16.
Artigo em Inglês | MEDLINE | ID: mdl-29967764

RESUMO

Genome editing describes a variety of molecular biology applications enabling targeted and precise alterations of the genomes of plants, animals and microorganisms. These rapidly developing techniques are likely to revolutionize the breeding of new crop varieties. Since genome editing can lead to the development of plants that could also have come into existence naturally or by conventional breeding techniques, there are strong arguments that these cases should not be classified as genetically modified organisms (GMOs) and be regulated no differently from conventionally bred crops. If a specific regulation would be regarded necessary, the application of genome editing for crop development may challenge risk assessment and post-market monitoring. In the session "Plant genome editing-any novel features to consider for ERA and regulation?" held at the 14th ISBGMO, scientists from various disciplines as well as regulators, risk assessors and potential users of the new technologies were brought together for a knowledge-based discussion to identify knowledge gaps and analyze scenarios for the introduction of genome-edited crops into the environment. It was aimed to enable an open exchange forum on the regulatory approaches, ethical aspects and decision-making considerations.

17.
Front Plant Sci ; 9: 1957, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693009

RESUMO

Genome Editing using engineered endonuclease (GEEN) systems rapidly took over the field of plant science and plant breeding. So far, Genome Editing techniques have been applied in more than fifty different plants; including model species like Arabidopsis; main crops like rice, maize or wheat as well as economically less important crops like strawberry, peanut and cucumber. These techniques have been used for basic research as proof-of-concept or to investigate gene functions in most of its applications. However, several market-oriented traits have been addressed including enhanced agronomic characteristics, improved food and feed quality, increased tolerance to abiotic and biotic stress and herbicide tolerance. These technologies are evolving at a tearing pace and especially the field of CRISPR based Genome Editing is advancing incredibly fast. CRISPR-Systems derived from a multitude of bacterial species are being used for targeted Gene Editing and many modifications have already been applied to the existing CRISPR-Systems such as (i) alter their protospacer adjacent motif (ii) increase their specificity (iii) alter their ability to cut DNA and (iv) fuse them with additional proteins. Besides, the classical transformation system using Agrobacteria tumefaciens or Rhizobium rhizogenes, other transformation technologies have become available and additional methods are on its way to the plant sector. Some of them are utilizing solely proteins or protein-RNA complexes for transformation, making it possible to alter the genome without the use of recombinant DNA. Due to this, it is impossible that foreign DNA is being incorporated into the host genome. In this review we will present the recent developments and techniques in the field of DNA-free Genome Editing, its advantages and pitfalls and give a perspective on technologies which might be available in the future for targeted Genome Editing in plants. Furthermore, we will discuss these techniques in the light of existing- and potential future regulations.

18.
Plant Cell Rep ; 35(7): 1493-506, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27142995

RESUMO

Novel plant genome editing techniques call for an updated legislation regulating the use of plants produced by genetic engineering or genome editing, especially in the European Union. Established more than 25 years ago and based on a clear distinction between transgenic and conventionally bred plants, the current EU Directives fail to accommodate the new continuum between genetic engineering and conventional breeding. Despite the fact that the Directive 2001/18/EC contains both process- and product-related terms, it is commonly interpreted as a strictly process-based legislation. In view of several new emerging techniques which are closer to the conventional breeding than common genetic engineering, we argue that it should be actually interpreted more in relation to the resulting product. A legal guidance on how to define plants produced by exploring novel genome editing techniques in relation to the decade-old legislation is urgently needed, as private companies and public researchers are waiting impatiently with products and projects in the pipeline. We here outline the process in the EU to develop a legislation that properly matches the scientific progress. As the process is facing several hurdles, we also compare with existing frameworks in other countries and discuss ideas for an alternative regulatory system.


Assuntos
Edição de Genes/métodos , Engenharia Genética/métodos , Genoma de Planta/genética , Plantas/genética , Produtos Agrícolas/genética , União Europeia , Alimentos Geneticamente Modificados/normas , Edição de Genes/legislação & jurisprudência , Engenharia Genética/legislação & jurisprudência , Melhoramento Vegetal/legislação & jurisprudência , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas , Estados Unidos
19.
Curr Opin Biotechnol ; 32: 47-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25448232

RESUMO

Genome editing technologies using sequence specific nucleases (SSNs) became a tremendously powerful and precise tool for reverse genetic approaches and applied biology. Transcription activator-like effector nucleases (TALENs) in particular, consisting of a free designable DNA binding domain and a nuclease, have been exploited today by a huge number of approaches in many different organisms. The convenience of designing the DNA binding domain and straightforward protocols for their assembly, as well as the broad number of applications in different scientific fields made it Natures method of the year 2011. TALENs act as molecular scissors by introducing double strand breaks (DSBs) to the DNA at a given location. The DSBs are subsequently repaired by the cell itself using different repair pathways such as non-homologous end joining (NHEJ) or homologous recombination (HR). These mechanisms can lead to deletions, insertions, replacements or larger chromosomal rearrangements. By offering a template DNA it is possible to channel the repair in direction of HR. In this article we review the recent findings in the field of SSN approaches with emphasis on plants.


Assuntos
Genoma de Planta , Plantas/genética , Animais , Sequência de Bases , Endonucleases/metabolismo , Engenharia Genética/métodos , Recombinação Homóloga , Humanos
20.
Front Plant Sci ; 5: 214, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018755

RESUMO

Toward the global understanding of plant meiosis, it seems to be essential to decipher why all as yet sequenced plants need or at least encode for two different meiotic SPO11 genes. This is in contrast to mammals and fungi, where only one SPO11 is present. Both SPO11 in Arabidopsis thaliana are essential for the initiation of double strand breaks (DSBs) during the meiotic prophase. In nearly all eukaryotic organisms DSB induction during prophase I by SPO11 leads to meiotic DSB repair, thereby ensuring the formation of a necessary number of crossovers (CO) as physical connections between the homologous chromosomes. We aim to investigate the specific functions and evolution of both SPO11 genes in land plants. Therefore, we identified and cloned the respective orthologous genes from Brassica rapa, Carica papaya, Oryza sativa, and Physcomitrella patens. In parallel we determined the full length cDNA sequences of SPO11-1 and -2 from all of these plants by RT-PCR. During these experiments we observed that the analyzed plants exhibit a pattern of alternative splicing products of both SPO11 mRNAs. Such an aberrant splicing has previously been described for Arabidopsis and therefore seems to be conserved throughout evolution. Most of the splicing forms of SPO11-1 and -2 seem to be non-functional as they either showed intron retention (IR) or shortened exons. However, the positional distribution and number of alternative splicing events vary strongly between the different plants. The cDNAs showed in most cases premature termination codons (PTCs) due to frameshift. Nevertheless, in some cases we found alternatively spliced but functional cDNAs. These findings let us suggest that alternative splicing of SPO11 depends on the respective gene sequence and on the plant species. Therefore, this conserved mechanism might play a role concerning regulation of SPO11.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...