Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 173-183, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134365

RESUMO

The 1,2,4,5-tetrakis(alkylthio)benzenes are redox-active organosulfur molecules that support oxidation to a stable radical cation. Their utility as ligands for the assembly of multimetal complexes with tailored functionality/property is unexamined. Here, 1,2,4,5-tetrakis(isopropylthio)benzene (tptbz, 1) is shown to bind PdCl2 at either one end, leaving the other open, or at both ends to form centrosymmetric [Cl2Pd(tptbz)PdCl2], 4. Ligand metathesis between Na2[(N≡C)2C2S2] (Na2mnt) and [Cl2M(tptbz)] (M = Pd, 2; M = Pt, 3) yields [(mnt)M(tptbz)] (M = Pd, 5; M = Pt, 6), but an alternative route involving transmetalation with [(mnt)SnMe2] delivers substantially greater yield. The mixed dithiolene-dithioether compound [(Ph2C2S2)Pt(tptbz)] (8) is formed by a similar transmetalation protocol using [(Ph2C2S2)SnnBu2]. Compounds 5, 6, and 8 are the first such heteroleptic complexes prepared by deliberate synthesis. The cyclic voltammetry of 8 reveals anodic waves at +0.14 and +0.97 V vs Fc+/Fc, which are attributed to successive dithiolene oxidation processes. While oxidized at +0.73 V as a free ligand, the redox-active MO of tptbz is pushed to a higher potential upon coordination to Pt2+ and is inaccessible. Calculations of the structures of [8]+ and of [((Cl2-3,5-C6H3)2C2S2)Pt(tptbz)]+ show that, in the latter, the dithiolene MOs are drawn down in energy into proximity with the tptbz MOs.

2.
Inorg Chem ; 62(25): 9854-9871, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37310001

RESUMO

Tetradentate diamino bis(thiolate) ligands (l-N2S2(2-)) with saturated linkages between heteroatoms support fully reduced [(Cu(l-N2S2))2Cu2] complexes that bear relevance as an entry point toward molecules featuring the Cu2ICu2II(µ4-S) core composition of nitrous oxide reductase (N2OR). Tetracopper [(Cu(l-N2(SMe2)2))2Cu2] (l-N2(SMe2H)2 = N1,N2-bis(2-methyl-2-mercaptopropane)-N1,N2-dimethylethane-1,2-diamine) does not support clean S atom oxidative addition but undergoes Cl atom transfer from PhICl2 or Ph3CCl to afford [(Cu(l-N2(SMe2)2))3(CuCl)5], 14. When introduced to Cu(I) sources, the l-N2(SArH)2 ligand (l-N2(SArH)2 = N1,N2-bis(2-mercaptophenyl)-N1,N2-dimethylethane-1,2-diamine), made by a newly devised route from N1,N2-bis(2-fluorophenyl)-N1,N2-dimethylethane-1,2-diamine, ultimately yields the mixed-valent pentacopper [(Cu(l-N2SAr2))3Cu2] (19), which has 3-fold rotational symmetry (D3) around a Cu2 axis. The single CuII ion of 19 is ensconced within an equatorial l-N2(SAr)2(2-) ligand, as shown by 14N coupling in its EPR spectrum. Formation of 19 proceeds from an initial, fully reduced product, [(Cu(l-N2SAr2))3Cu2(Cu(MeCN))] (17), which is C2 symmetric and exceedingly air-sensitive. While unreactive toward chalcogen donors, 19 supports reversible reduction to the all-cuprous state; generation of [19]1- and treatment with S atom donors only return 19 because structural adjustments necessary for oxidative addition are noncompetitive with outer-sphere electron transfer. Oxidation of 19 is marked by intense darkening, consistent with greater mixed valency, and by dimerization in the crystalline state to a decacopper species ([20]2+) of S4 symmetry.

3.
Inorg Chem ; 61(50): 20424-20432, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36472325

RESUMO

The uranyl complex UVIO2Cl(LMes) of the redox-active, acyclic dipyrrin-diimine anion LMes- [HLMes = 1,9-di-tert-butyl-imine-5-(mesityl)dipyrrin] is reported, and its redox property is explored and compared with that of the previously reported UVIO2Cl(LF) [HLF = 1,9-di-tert-butyl-imine-5-(pentafluorophenyl)dipyrrin] to understand the influence of the meso substituent. Cyclic voltammetry, electron paramagnetic resonance spectroscopy, and density functional theory studies show that the alteration from an electron-withdrawing meso substituent to an electron-donating meso substituent on the dipyrrin ligand significantly modifies the stability of the products formed after reduction. For UVIO2Cl(LMes), the formation of a diamond-shaped, oxo-bridged uranyl(V) dimer, [UVO2(LMes)]2 is seen, whereas in contrast, for UVIO2Cl(LF), only ligand reduction occurs. Computational modeling of these reactions shows that while ligand reduction followed by chloride dissociation occurs in both cases, ligand-to-metal electron transfer is favorable for UVIO2Cl(LMes) only, which subsequently facilitates uranyl(V) dimerization.

4.
Inorg Chem ; 61(44): 17804-17818, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36282620

RESUMO

Metallodithiolene complexes of the type [(R2C2S2)M(η2-tpbz)] [R = CN, Ph, or p-anisyl; M = Ni2+, Pd2+, or Pt2+; tpbz = 1,2,4,5-tetrakis(diphenylphosphino)benzene] chelate transition metals ions to form trimetallic arrays [[(R2C2S2)M(tpbz)]2M']n+, where M' is square planar Pt2+, tetrahedral Cu+, Ag+, or Au+, or octahedral {ReBr(CO)}/{Re(CO)2}+. Forcing conditions (190 °C reflux in decalin, 72 h) are demanded for the Re+ compounds. With third-row metals at the nexus, the compounds are stable to air. Twelve members of the set have been characterized by X-ray diffraction and reveal dithiolene centroid-centroid distances ranging from 22.4 to 24.0 Å. Folding around each tpbz intrachelate P···P axis such that the MP2/M'P2 planes meet the tpbz P2C6P2 mean plane at non-zero values gives rise to core topologies that appear "S-like" or herringbone-like for M' = Pt2+ or {ReBr(CO)}/{Re(CO)2}+. Calculations reveal that departure from idealized D2h/D2d/C2v symmetries is induced by steric crowding between Ph groups and that dynamic, fluxional behavior is pertinent to the solution phase because multiple, lower-symmetry minima of comparable energy exist. Spectroscopically, the formation of the trimetallic arrays is marked by a shift of the open end 31P nuclear magnetic resonance signal from approximately -14.5 ppm to approximately +41, approximately +20.5, and approximately +28.5 ppm for M' = Pt2+, Au+, and {ReBr(CO)}/{Re(CO)2}+, respectively. Electrochemically, dithiolene-based oxidations are observed for the R = Ph and M' = Pt2+ or Au+ compounds but at potentials that are anodically shifted relative to charge-neutral [[(R2C2S2)M]2(µ-tpbz)]. The compounds reported clarify the possibilities for the synthesis of assemblies in which weakly coupled spins may be created in their modular (R2C2S2)M and M' parts.

5.
Chemistry ; 28(49): e202201725, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35722972

RESUMO

A new flavin-based gelator is reported which forms micellar structures at high pH and gels at low pH. This flavin can be used for the photooxidation of thiols under visible light, with the catalytic efficiency being linked to the self-assembled structures present.


Assuntos
Flavinas , Luz , Catálise , Flavinas/química , Géis/química , Compostos Orgânicos , Oxirredução
6.
Dalton Trans ; 51(15): 5772-5776, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35348162

RESUMO

Spectroscopic and computational examination of the neutral tris-dioxolene complex [V(dbcat)3] (dbcat2- = 3,6-di-tert-butylcatecholate) reveals a Class III mixed-valent ground state. The radical is stabilised by delocalisation across the ligands mediated by the energy matched d orbital manifold of the V(V) centre. This electronic structure is compared to the tris-dithiolene and tris-diimine analogues that possess V(IV) and V(II) ions, respectively.

7.
Inorg Chem ; 61(7): 3249-3255, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35129967

RESUMO

The uranyl complexes UO2(OAc)(L) and UO2Cl(L) of the redox-active, acyclic diamido-dipyrrin anion L- are reported and their redox properties explored. Because of the inert nature of the complexes toward hydrolysis and oxidation, synthesis of both the ligands and complexes was conducted under ambient conditions. Voltammetric, electron paramagnetic resonance spectroscopy, and density functional theory studies show that one-electron chemical reduction by the reagent CoCp2 leads to the formation of a dipyrrin radical for both complexes [Cp2Co][UO2(OAc)(L•)] and [Cp2Co][UO2Cl(L•)].

8.
Inorg Chem ; 60(17): 13177-13192, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34370468

RESUMO

Open-ended, singly metalated dithiolene complexes with 1,2,4,5-tetrakis(diphenylphosphino)benzene (tpbz) are prepared either by ligand transfer to [Cl2M(tpbz)] from (R2C2S2)SnR'2 (R = CN, R' = Me; R = Me, R' = nBu) or by a direct reaction between tpbz and [M(S2C2R2)2] (M = Ni, Pd, Pt; R = Ph, p-anisyl) in a 1:1 ratio. The formation of dimetallic [(R2C2S2)M(tpbz)M(S2C2R2)] attends these syntheses in modest amounts, but the open-ended compounds are readily separated by silica chromatography. As affirmed by X-ray crystallographic characterization of numerous members of the set, the [(R2C2S2)M(tpbz)] compounds show dithiolene ligands in their fully reduced ene-1,2-dithiolate form conjoined with divalent Group 10 ions. Minor amounts of octahedral [(Ph2C2S2)2PtIV(tpbz)], a presumed intermediate, are isolated from the preparation of [(Ph2C2S2)PtII(tpbz)]. Heterodimetallic [(Ph2C2S2)Pt(tpbz)Ni(S2C2Me2)] is prepared from [(Ph2C2S2)PtII(tpbz)]; its cyclic voltammogram, upon anodic scanning, shows two pairs of closely spaced, but resolved, 1e- oxidations corresponding first to [R2C2S22-] - 1e- → [R2C2S•S-] and then to [R2C2S•S-] - 1e- → [R2(C═S)2]. The open diphosphine of [(R2C2S2)M(tpbz)] can be oxidized to afford open-ended [(R2C2S2)M(tpbzE2)] (E = O, S). Synthesis of the octahedral [(dppbO2)3Ni][I3]2 [dppbO2 = 1,2-bis(diphenylphosphoryl)benzene] suggests that the steric profile of [(R2C2S2)M(tpbzE2)] is moderated enough that three could be accommodated as ligands around a metal ion.

9.
Chem Sci ; 12(14): 5082-5090, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-34163748

RESUMO

The enhancement of reactivity inside supramolecular coordination cages has many analogies to the mode of action of enzymes, and continues to inspire the design of new catalysts for a range of reactions. However, despite being a near-ubiquitous class of reactions in organic chemistry, enhancement of the reduction of carbonyls to their corresponding alcohols remains very much underexplored in supramolecular coordination cages. Herein, we show that encapsulation of small aromatic aldehydes inside a supramolecular coordination cage allows the reduction of these aldehydes with the mild reducing agent sodium cyanoborohydride to proceed with high selectivity (ketones and esters are not reduced) and in good yields. In the absence of the cage, low pH conditions are essential for any appreciable conversion of the aldehydes to the alcohols. In contrast, the specific microenvironment inside the cage allows this reaction to proceed in bulk solution that is pH-neutral, or even basic. We propose that the cage acts to stabilise the protonated oxocarbenium ion reaction intermediates (enhancing aldehyde reactivity) whilst simultaneously favouring the encapsulation and reduction of smaller aldehydes (which fit more easily inside the cage). Such dual action (enhancement of reactivity and size-selectivity) is reminiscent of the mode of operation of natural enzymes and highlights the tremendous promise of cage architectures as selective catalysts.

10.
Inorg Chem ; 60(12): 9057-9063, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34096284

RESUMO

The tungsten ion that resides at the active site of a unique class of enzymes only found in esoteric hyperthermophilic archaea bacteria is known to possess at least one terminal chalcogenide ligand. The identity of this as either an oxo or sulfido (or both) is difficult to ascertain from structural studies; therefore, small-molecule analogues are developed to calibrate and substantiate spectroscopic signatures obtained from native proteins. The electronic structures of Tp*WECl2 (E = O, S; Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate) have been scrutinized using electronic, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy to assess the impact of terminal chalcogen on the adjacent cis chloride ligands. Examination at the Cl K-edge provides a direct probe of the bonding and therein lability of these chloride ligands, and in conjunction with density functional theoretical and multireference calculations reveals greater bond covalency in Tp*WOCl2 compared to Tp*WSCl2. The computational model and electronic structure assignment are corroborated by the reproduction of spin-Hamiltonian parameters, whose magnitude is dominated by the sizeable spin-orbit coupling of tungsten.

11.
Dalton Trans ; 50(14): 4778-4782, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33877176

RESUMO

The electronic structures of homovalent [V2(µ-S2)2(R2dtc)4] (R = Et, iBu) and mixed-valent [V2(µ-S2)2(R2dtc)4]+ are reported here. The soft-donor, eight-coordinate ligand shell combined with the fully delocalised ground state provides a highly rigid and covalent environment that will nurture long spin relaxation times in vanadyl-based molecular qubits.

12.
Dalton Trans ; 49(44): 15718-15730, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33146215

RESUMO

The chiral dicobalt(ii) complex [CoII2(µ2-L)2] (1) (H2L = N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide) and its tert-butyl analogue [CoII2(µ2-LBu)2] (2) were synthesized and structurally characterized. Addition of one equivalent of AgSbF6 to the dichloromethane solution of 1 and 2 resulted in the isolation of the mixed-valent dicobalt(iii,ii) species [CoIIICoII(µ2-L)2]SbF6 (3) and [CoIIICoII(µ2-LBu)2]SbF6 (4). Homovalent 1 and 2 exhibited catalytic activity towards proton reduction in the presence of acetic acid (AcOH) as the substrate. The complexes are stable in solution while their catalytic turnover frequency is estimated at 10 and 34.6 h-1 molcat-1 for 1 and 2, respectively. Calculations reveal one-electron reduction of 1 is ligand-based, preserving the dicobalt(ii) core and activating the ligand toward protonation at the quinoline group. This creates a vacant coordination site that is subsequently protonated to generate the catalytically ubiquitous Co(iii) hydride. The dinuclear structure persists throughout where the distal Co(ii) ion modulates the reactivity of the adjacent metal site by promoting ligand redox activity through spin state switching.

13.
ACS Catal ; 10(18): 10717-10725, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32983589

RESUMO

The mechanism of the reactions between dppf-Ni0 complexes and alkyl halides has been investigated using kinetic and mechanistic experiments and DFT calculations. The active species is [Ni(κ2-dppf)(κ1-dppf)], which undergoes a halide abstraction reaction with alkyl halides and rapidly captures the alkyl radical that is formed. The rates of the reactions of [Ni(COD)(dppf)] with alkyl halides and the yields of prototypical nickel-catalyzed Kumada cross-coupling reactions of alkyl halides are shown to be significantly improved by the addition of free dppf ligand.

14.
Inorg Chem ; 59(18): 13190-13200, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32869986

RESUMO

Understanding magnetic anisotropy and specifically how to tailor it is crucial in the search for high-temperature single-ion magnets. Herein, we investigate the magnetic anisotropy in a six-coordinated cobalt(II) compound that has a complex geometry and distinct triaxial magnetic anisotropy from the perspective of the electronic structure, using electronic spectra, ab initio calculations, and an experimental charge density, of which the latter two provides insight into the d-orbital splitting. The analysis showed that the d-orbital splitting satisfactorily predicted the complex triaxial magnetic anisotropy exhibited by the compound. Furthermore, a novel method to directly compare the ab initio results and the d-orbital populations obtained from the experimental charge density was developed, while a topological analysis of the density provided insights into the metal-ligand bonding. This work thus further establishes the validity of using d-orbitals for predicting magnetic anisotropy in transition metal compounds while also pointing out the need for a more frequent usage of the term triaxial anisotropy in the field of single-molecule magnetism.

15.
Inorg Chem ; 59(13): 8657-8662, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32525669

RESUMO

A series of six-coordinate [Cu(L)L1][BF4]2 (L1 = 2,6-bis{1-oxyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-2-yl}pyridine) complexes are reported. Ferromagnetic coupling between the Cu and L1 ligand spins is enhanced by an L coligand with distal methyl substituents, which is attributed to a sterically induced suppression of its Jahn-Teller distortion.

16.
Inorg Chem ; 59(11): 7571-7583, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421315

RESUMO

The introduction of (N2)3-• radicals into multinuclear lanthanide molecular magnets raised hysteresis temperatures by stimulating strong exchange coupling between spin centers. Radical ligands with larger donor atoms could promote more efficient magnetic coupling between lanthanides to provide superior magnetic properties. Here, we show that heavy chalcogens (S, Se, Te) are primed to fulfill these criteria. The moderately reducing Sm(II) complex, [Sm(N††)2], where N†† is the bulky bis(triisopropylsilyl)amide ligand, can be oxidized (i) by diphenyldichalcogenides E2Ph2 (E = S, Se, Te) to form the mononuclear series [Sm(N††)2(EPh)] (E = S, 1-S; Se, 1-Se, Te, 1-Te); (ii) S8 or Se8 to give dinuclear [{Sm(N††)2}2(µ-η2:η2-E2)] (E = S, 2-S2; Se, 2-Se2); or (iii) with Te═PEt3 to yield [{Sm(N††)2}(µ-Te)] (3). These complexes have been characterized by single crystal X-ray diffraction, multinuclear NMR, FTIR, and electronic spectroscopy; the steric bulk of N†† dictates the formation of mononuclear complexes with chalcogenate ligands and dinuclear species with the chalcogenides. The Lα1 fluorescence-detected X-ray absorption spectra at the Sm L3-edge yielded resolved pre-edge and white-line peaks for 1-S and 2-E2, which served to calibrate our computational protocol in the successful reproduction of the spectral features. This method was employed to elucidate the ground state electronic structures for proposed oxidized and reduced variants of 2-E2. Reactivity is ligand-based, forming species with bridging superchalcogenide (E2)-• and subchalcogenide (E2)3-• radical ligands. The extraordinarily large exchange couplings provided by these dichalcogenide radicals reveal their suitability as potential successors to the benchmark (N2)3-• complexes in molecular magnets.

17.
Appl Opt ; 59(9): 2731-2738, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32225822

RESUMO

Optical properties of low-temperature pulsed DC-sputter deposited ($ {\le} {70° {\rm C}}$≤70°C) hydrogenated carbon are presented. Increasing hydrogen incorporation into the sputter deposited carbon significantly decreases infrared optical absorption due to a decrease in deep absorptive states associated with dangling bonds. Hydrogen flow is optimized (hydrogen flow 3 sccm), achieving the best compromise between increased infrared transmittance and hardness for durable coating performance. Optical, environmental, and durability performance of pulsed DC-sputtered carbon incorporated in multilayer (a-C:H/Ge) infrared antireflective coatings indicates suitability as a durable infrared optical coating for commonly used infrared substrates, including temperature sensitive chalcogenide glass.

18.
R Soc Open Sci ; 6(7): 190336, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417736

RESUMO

2,5-Dicarboxy-2,5-dihydrofurans are key constituents of a number of natural products and have roles as intermediates in the formation of other such compounds of interest. Typically, these species are synthesized using toxic Pb(IV) salts. Electrochemical syntheses of 2,5-diacetoxy-2,5-dihydrofuran that do not require the use of lead have been reported, but a general lack of experimental detail has prevented these procedures from being more widely adopted. Moreover, no electrochemical study has yet reported the ratio of cis and trans isomers produced. Herein, we compare the chemical, lead-based route to 2,5-diacetoxy-2,5-dihydrofuran with a fully described electrosynthesis method. In doing so, we have discovered that the cis and trans isomers of this compound were previously incorrectly assigned in the literature, an error that we correct by obtaining the crystal structure of cis-2,5-diacetoxy-2,5-dihydrofuran. This allows the ratios of the isomers as prepared by the chemical (2 : 1 cis : trans) and electrochemical (7 : 5 cis : trans) methods to be obtained. Through experimental and computational insights, we propose a mechanism for the electrochemical synthesis of 2,5-dicarboxy-2,5-dihydrofurans and go some way towards validating this mechanism by synthesizing 2,5-dibutoxy-2,5-dihydrofuran electrochemically for the first time. We hope that these findings will provide some greater clarity to the literature surrounding the electrosynthesis and potential applications of 2,5-dicarboxy-2,5-dihydrofurans.

19.
Angew Chem Int Ed Engl ; 58(30): 10043-10047, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31267608

RESUMO

A recent Communication in this journal reported the stabilization of low-valent iron(I) in a fully oxidized polyoxovanadate. With no ligand-field argument to support such an assignment, a re-evaluation of the data accompanied by detailed computational analysis reveals the redox chemistry is localized to the polyoxovanadate, and when reduced, instigates a spin transition at iron.

20.
J Am Chem Soc ; 141(20): 8346-8357, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31017428

RESUMO

Phase control in the self-assembly of metal-organic frameworks (MOFs) is often a case of trial and error; judicious control over a number of synthetic variables is required to select the desired topology and control features such as interpenetration and defectivity. Herein, we present a comprehensive investigation of self-assembly in the Fe-biphenyl-4,4'-dicarboxylate system, demonstrating that coordination modulation can reliably tune between the kinetic product, noninterpenetrated MIL-88D(Fe), and the thermodynamic product, two-fold interpenetrated MIL-126(Fe). Density functional theory simulations reveal that correlated disorder of the terminal anions on the metal clusters results in hydrogen bonding between adjacent nets in the interpenetrated phase and this is the thermodynamic driving force for its formation. Coordination modulation slows self-assembly and therefore selects the thermodynamic product MIL-126(Fe), while offering fine control over defectivity, inducing mesoporosity, but electron microscopy shows MIL-88D(Fe) persists in many samples despite not being evident by diffraction. Interpenetration control is also demonstrated using the 2,2'-bipyridine-5,5'-dicarboxylate linker; it is energetically prohibitive for it to adopt the twisted conformation required to form the interpenetrated phase, although multiple alternative phases are identified due to additional coordination of Fe cations to its N donors. Finally, we introduce oxidation modulation-the use of metal precursors in different oxidation states from that found in the final MOF-to kinetically control self-assembly. Combining coordination and oxidation modulation allows the synthesis of pristine MIL-126(Fe) with BET surface areas close to the predicted maximum for the first time, suggesting that combining the two may be a powerful methodology for the controlled self-assembly of high-valent MOFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...