Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104921, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328104

RESUMO

Steroidogenic factor-1 (SF-1) is a phospholipid-sensing nuclear receptor expressed in the adrenal glands, gonads, and hypothalamus which controls steroidogenesis and metabolism. There is significant therapeutic interest in SF-1 because of its oncogenic properties in adrenocortical cancer. Synthetic modulators are attractive for targeting SF-1 for clinical and laboratory purposes due to the poor pharmaceutical properties of its native phospholipid ligands. While small molecule agonists targeting SF-1 have been synthesized, no crystal structures have been reported of SF-1 in complexes with synthetic compounds. This has prevented the establishment of structure-activity relationships that would enable better characterization of ligand-mediated activation and improvement in current chemical scaffolds. Here, we compare the effects of small molecules in SF-1 and its close homolog, liver receptor homolog-1 (LRH-1), and identify several molecules that specifically activate LRH-1. We also report the first crystal structure of SF-1 in complex with a synthetic agonist that displays low nanomolar affinity and potency for SF-1. We use this structure to explore the mechanistic basis for small molecule agonism of SF-1, especially compared to LRH-1, and uncover unique signaling pathways that drive LRH-1 specificity. Molecular dynamics simulations reveal differences in protein dynamics at the pocket mouth as well as ligand-mediated allosteric communication from this region to the coactivator binding interface. Our studies, therefore, shed important insight into the allostery driving SF-1 activity and show potential for modulation of LRH-1 over SF-1.


Assuntos
Modelos Moleculares , Simulação de Dinâmica Molecular , Receptores Citoplasmáticos e Nucleares , Bibliotecas de Moléculas Pequenas , Fator Esteroidogênico 1 , Ligantes , Fosfolipídeos/química , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/química , Bibliotecas de Moléculas Pequenas/química , Fator Esteroidogênico 1/agonistas , Fator Esteroidogênico 1/química , Humanos , Cristalografia por Raios X
2.
J Med Chem ; 65(9): 6888-6902, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35503419

RESUMO

Liver receptor homologue-1 (LRH-1) is a phospholipid-sensing nuclear receptor that has shown promise as a target for alleviating intestinal inflammation and metabolic dysregulation in the liver. LRH-1 contains a large ligand-binding pocket, but generating synthetic modulators has been challenging. We have had recent success generating potent and efficacious agonists through two distinct strategies. We targeted residues deep within the pocket to enhance compound binding and residues at the mouth of the pocket to mimic interactions made by phospholipids. Here, we unite these two designs into one molecule to synthesize the most potent LRH-1 agonist to date. Through a combination of global transcriptomic, biochemical, and structural studies, we show that selective modulation can be driven through contacting deep versus surface polar regions in the pocket. While deep pocket contacts convey high affinity, contacts with the pocket mouth dominate allostery and provide a phospholipid-like transcriptional response in cultured cells.


Assuntos
Fosfolipídeos , Receptores Citoplasmáticos e Nucleares , Linhagem Celular , Fosfolipídeos/metabolismo
3.
Synlett ; 32(2): 211-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326573

RESUMO

Reported here are conditions for the construction of spirocyclic piperidines from linear aryl halide precursors. These conditions employ a strongly reducing organic photoredox catalyst in combination with a trialkylamine reductant to achieve formation of aryl radical species. Regioselective cyclization followed by hydrogen-atom transfer affords a range of complex spiropiperidines. This system operates efficiently under mild conditions without the need for toxic reagents or precious metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...