Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(24)2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38132171

RESUMO

Hypoxia-inducible factor (HIF)-1α represents an oxygen-sensitive subunit of HIF transcriptional factor, which is usually degraded in normoxia and stabilized in hypoxia to regulate several target gene expressions. Nevertheless, in the skeletal muscle satellite stem cells (SCs), an oxygen level-independent regulation of HIF-1α has been observed. Although HIF-1α has been highlighted as a SC function regulator, its spatio-temporal expression and role during myogenic progression remain controversial. Herein, using biomolecular, biochemical, morphological and electrophysiological analyses, we analyzed HIF-1α expression, localization and role in differentiating murine C2C12 myoblasts and SCs under normoxia. In addition, we evaluated the role of matrix metalloproteinase (MMP)-9 as an HIF-1α effector, considering that MMP-9 is involved in myogenesis and is an HIF-1α target in different cell types. HIF-1α expression increased after 24/48 h of differentiating culture and tended to decline after 72 h/5 days. Committed and proliferating mononuclear myoblasts exhibited nuclear HIF-1α expression. Differently, the more differentiated elongated and parallel-aligned cells, which are likely ready to fuse with each other, show a mainly cytoplasmic localization of the factor. Multinucleated myotubes displayed both nuclear and cytoplasmic HIF-1α expression. The MMP-9 and MyoD (myogenic activation marker) expression synchronized with that of HIF-1α, increasing after 24 h of differentiation. By means of silencing HIF-1α and MMP-9 by short-interfering RNA and MMP-9 pharmacological inhibition, this study unraveled MMP-9's role as an HIF-1α downstream effector and the fact that the HIF-1α/MMP-9 axis is essential in morpho-functional cell myogenic commitment.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Metaloproteinase 9 da Matriz , Mioblastos Esqueléticos , Animais , Camundongos , Diferenciação Celular , Metaloproteinase 9 da Matriz/metabolismo , Mioblastos Esqueléticos/metabolismo , Oxigênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular
2.
Biomater Adv ; 155: 213674, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922662

RESUMO

Mechanomimetic materials are particularly attractive for modeling in vitro fibroblast to myofibroblast (Myof) transition, a key process in the physiological repair of damaged tissue, and recognized as the core cellular mechanism of pathological fibrosis in different organs. In vivo, mechanical stimuli from the extracellular matrix (ECM) are crucial, together with cell-cell contacts and the pro-fibrotic transforming growth factor (TGF)-ß1, in promoting fibroblast differentiation. Here, we explore the impact of hydrogels made by polyacrylamide with different composition on fibroblast behavior. By appropriate modulation of the hydrogel composition (e.g. adjusting the crosslinker content), we produce and fully characterize three kinds of scaffolds with different Young modulus (E). We observe that soft hydrogels (E < 1 kPa) induced fibroblast differentiation better than stiffer ones, also in the absence of TGF-ß1. This study provides a readily accessible biomaterial platform to promote Myof generation. The easy approach used and the commercial availability of the monomers make these hydrogels suitable to a wide range of biomedical applications combined with high reproducibility and simple preparation protocols.


Assuntos
Hidrogéis , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Hidrogéis/farmacologia , Reprodutibilidade dos Testes , Diferenciação Celular/fisiologia , Fibroblastos/metabolismo , Fibrose
3.
Life (Basel) ; 13(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37763216

RESUMO

Adipokines are peptide hormones produced by the adipose tissue involved in several biological functions. Among adipokines, adiponectin (ADPN) has antidiabetic and anti-inflammatory properties. It can also modulate food intake at central and peripheral levels, acting on hypothalamus and facilitating gastric relaxation. ADPN exerts its action interacting with two distinct membrane receptors and triggering some well-defined signaling cascades. The ceramidase activity of ADPN receptor has been reported in many tissues: it converts ceramide into sphingosine. In turn, sphingosine kinase (SK) phosphorylates it into sphingosine-1 phosphate (S1P), a crucial mediator of many cellular processes including contractility. Using a multidisciplinary approach that combined biochemical, electrophysiological and morphological investigations, we explored for the first time the possible role of S1P metabolism in mediating ADPN effects on the murine gastric fundus muscle layer. By using a specific pharmacological inhibitor of SK2, we showed that ADPN affects smooth muscle cell membrane properties and contractile machinery via SK2 activation in gastric fundus, adding a piece of knowledge to the action mechanisms of this hormone. These findings help to identify ADPN and its receptors as new therapeutic targets or as possible prognostic markers for diseases with altered energy balance and for pathologies with fat mass content alterations.

4.
Endocr Relat Cancer ; 30(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493200

RESUMO

Pheochromocytomas/paragangliomas (PPGLs) are neuroendocrine tumours, mostly resulting from mutations in predisposing genes. Mutations of succinate dehydrogenase (SDH) subunit B (SDHB) are associated with high probability of metastatic disease. Since bioelectrical properties and signalling in cancer are an emerging field, we investigated the metabolic, functional and electrophysiological characteristics in human succinate dehydrogenase subunit B (SDHB)-deficient pheochromocytoma cells. These cells exhibited reduced SDH function with elevated succinate-to-fumarate ratio and reduced intracellular ATP levels. The analysis of membrane passive properties revealed a more hyperpolarized membrane potential and a lower cell capacitance of SDHB-deficient cells compared to the parental ones. These bioelectrical changes were associated with reduced proliferation and adhesion capacity of SDHB-deficient cells. Only in SDHB-deficient cells, we also observed an increased amplitude of potassium currents suggesting an activation of ATP-sensitive potassium channels (KATP). Indeed, exposure of the SDHB-deficient cells to glibenclamide, a specific KATP inhibitor, or to ATP caused normalization of potassium current features and altered proliferation and adhesion. In this work, we show for the first time that reduced intracellular ATP levels in SDHB-deficient chromaffin cells impaired cell bioelectrical properties, which, in turn, are associated with an increased cell aggressiveness. Moreover, we first ever demonstrated that glibenclamide not only reduced the outward potassium currents in SDHB-deficient cells but increased their growth capacity, reduced their ability to migrate and shifted their phenotype towards one more similar to that of parental one.


Assuntos
Neoplasias das Glândulas Suprarrenais , Células Cromafins , Paraganglioma , Feocromocitoma , Humanos , Succinato Desidrogenase/genética , Glibureto/farmacologia , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias das Glândulas Suprarrenais/genética , Células Cromafins/metabolismo , Células Cromafins/patologia , Trifosfato de Adenosina
5.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674598

RESUMO

Adiponectin (ADPN), a hormone produced by adipose tissue, facilitates gastric relaxation and can be a satiety signal in the network connecting peripheral organs and the central nervous system for feeding behavior control. Here, we performed preclinical research by morpho-functional analyses on murine gastric fundus smooth muscle to add insights into the molecular mechanisms underpinning ADPN action. Moreover, we conducted a clinical study to evaluate the potential use of ADPN as a biomarker for eating disorders (ED) based on the demonstrated gastric alterations and hormone level fluctuations that are often associated with ED. The clinical study recruited patients with ED and healthy controls who underwent blood draws for ADPN dosage and psychopathology evaluation tests. The findings of this basic research support the ADPN relaxant action, as indicated by the smooth muscle cell membrane pro-relaxant effects, with mild modifications of contractile apparatus and slight inhibitory effects on gap junctions. All of these actions engaged the ADPN/nitric oxide/guanylate cyclase pathway. The clinical data failed to unravel a correlation between ADPN levels and the considered ED, thus negating the potential use of ADPN as a valid biomarker for ED management for the moment. Nevertheless, this adipokine can modulate physiological eating behavior, and its effects deserve further investigation.


Assuntos
Adiponectina , Fundo Gástrico , Humanos , Animais , Camundongos , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Músculo Liso/metabolismo , Biomarcadores/metabolismo
6.
Environ Pollut ; 317: 120766, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460192

RESUMO

The neuroendocrine control of reproduction is strictly coordinated at the central level by the pulsatile release of gonadotropin-releasing hormone (GnRH) by the hypothalamic GnRH neurons. Alterations of the GnRH-network, especially during development, lead to long-term reproductive and systemic consequences, also causing infertility. Recent evidence shows that benzo[a]pyrene (BaP), a diffuse pollutant that can play a role as an endocrine disruptor, affects gonadal function and gamete maturation, whereas data demonstrating its impact at hypothalamic level are very scarce. This study investigated the effects of BaP (10 µM) in a primary cell culture isolated from the human fetal hypothalamus (hfHypo) and exhibiting a clear GnRH neuron phenotype. BaP significantly decreased gene and protein expression of both GnRH and kisspeptin receptor (KISS1R), the master regulator of GnRH neuron function. Moreover, BaP exposure increased phospho-ERK1/2 signaling, a well-known mechanism associated with KISS1R activation. Interestingly, BaP altered the electrophysiological membrane properties leading to a significant depolarizing effect and it also significantly increased GnRH release, with both effects being not affected by kisspeptin addition. In conclusion, our findings demonstrate that BaP may alter GnRH neuron phenotype and function, mainly interfering with KISS1R signaling and GnRH secretion and therefore with crucial mechanisms implicated in the central neuroendocrine control of reproduction.


Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Humanos , Receptores de Kisspeptina-1/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Reprodução/fisiologia , Neurônios
7.
FASEB J ; 36(11): e22598, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36305891

RESUMO

Cachexia is a systemic disease associated with several pathologies, including cancer, that leads to excessive weight loss due to enhanced protein degradation. Previously, we showed that cachectic features in myotubes are provoked by a metabolic shift toward lactic fermentation. Our previous results led us to hyphotesise that increasing pyruvate concentration could impede the metabolic modifications responsible for induction of cachexia in myotubes. Here, we demonstrated that the addition of sodium pyruvate in conditioned media from CT26 colon cancer cells (CM CT26) prevents the onset of either phenotypic and metabolic cachectic features. Myotubes treated with CM CT26 containing sodium pyruvate show a phenotype similar to the healthy counterpart and display lactate production, oxygen consumption, and pyruvate dehydrogenase activity as control myotubes. The use of the Mitochondrial Pyruvate Carrier inhibitor UK5099, highlights the importance of mitochondrial pyruvate amount in the prevention of cachexia. Indeed, UK5099-treated myotubes show cachectic features as those observed in myotubes treated with CM CT26. Finally, we found that sodium pyruvate is able to decrease STAT3 phosphorylation level, a signaling pathway involved in the induction of cachexia in myotubes. Collectively, our results show that cachexia in myotubes could be prevented by the utilization of sodium pyruvate which impedes the metabolic modifications responsible for the acquisition of the cachectic features.


Assuntos
Caquexia , Ácido Pirúvico , Humanos , Caquexia/metabolismo , Ácido Pirúvico/farmacologia , Ácido Pirúvico/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais , Sódio/metabolismo , Músculo Esquelético/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
Front Physiol ; 13: 930197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910552

RESUMO

Resistin, among its several actions, has been reported to exert central anorexigenic effects in rodents. Some adipokines which centrally modulate food intake have also been reported to affect the activity of gastric smooth muscle, whose motor responses represent a source of peripheral signals implicated in the control of the hunger-satiety cycle through the gut-brain axis. On this basis, in the present experiments, we investigated whether resistin too could affect the mechanical responses in the mouse longitudinal gastric fundal strips. Electrical field stimulation (EFS) elicited tetrodotoxin- and atropine-sensitive contractile responses. Resistin reduced the amplitude of the EFS-induced contractile responses. This effect was no longer detected in the presence of L-NNA, a nitric oxide (NO) synthesis inhibitor. Resistin did not influence the direct muscular response to methacholine. In the presence of carbachol and guanethidine, EFS elicited inhibitory responses whose amplitude was increased by resistin. L-NNA abolished the inhibitory responses evoked by EFS, indicating their nitrergic nature. In the presence of L-NNA, resistin did not have any effect on the EFS-evoked inhibitory responses. Western blot and immunofluorescence analysis revealed a significant increase in neuronal nitric oxide synthase (nNOS) expression in neurons of the myenteric plexus following resistin exposure. In conclusion, the present results offer the first evidence that resistin acts on the gastric fundus, likely through a modulatory action on the nitrergic neurotransmission.

9.
Cells ; 11(4)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203362

RESUMO

BACKGROUND: Adiponectin (Adn), released by adipocytes and other cell types such as skeletal muscle, has insulin-sensitizing and anti-inflammatory properties. Sphingosine 1-phosphate (S1P) is reported to act as effector of diverse biological actions of Adn in different tissues. S1P is a bioactive sphingolipid synthesized by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK) 1 and 2. Consolidated findings support the key role of S1P in the biology of skeletal muscle. METHODS AND RESULTS: Here we provide experimental evidence that S1P signalling is modulated by globular Adn treatment being able to increase the phosphorylation of SK1/2 as well as the mRNA expression levels of S1P4 in C2C12 myotubes. These findings were confirmed by LC-MS/MS that showed an increase of S1P levels after Adn treatment. Notably, the involvement of S1P axis in Adn action was highlighted since, when SK1 and 2 were inhibited by PF543 and ABC294640 inhibitors, respectively, not only the electrophysiological changes but also the increase of oxygen consumption and of aminoacid levels induced by the hormone, were significantly inhibited. CONCLUSION: Altogether, these findings show that S1P biosynthesis is necessary for the electrophysiological properties and oxidative metabolism of Adn in skeletal muscle cells.


Assuntos
Adiponectina , Lisofosfolipídeos , Fibras Musculares Esqueléticas , Esfingosina , Adiponectina/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida , Lisofosfolipídeos/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometria de Massas em Tandem
10.
Exp Physiol ; 107(2): 106-121, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935228

RESUMO

NEW FINDINGS: What is the central question of this study? It is a challenge to discover effective therapies for fibrosis. Increasing evidence supports the antifibrotic potential of platelet-rich plasma (PRP) as a source of bioactive molecules, such as vascular endothelial growth factor (VEGF)-A. However, the effects and mechanisms of action of PRP need to be clarified. What is the main finding and its importance? This report clarifies the mechanisms mediating the antifibrotic action of PRP, strengthening the role of VEGF-A/VEGF receptor, and identifies gap junction currents and connexin 43 as novel targets of this pathway in the fibroblast-to-myofibroblast transition induced by the transforming growth factor-ß1. ABSTRACT: Despite increasing experimental evidence, the antifibrotic potential of platelet-rich plasma (PRP) remains controversial, and its mechanisms of action are not fully clarified. This short report extends our previous research on the capability of PRP to prevent the in vitro differentiation of fibroblasts toward myofibroblasts, the key effectors of fibrosis, induced by the profibrotic agent transforming growth factor-ß1 (TGF-ß1). In particular, we focused on the involvement of signalling mediated by vascular endothelial growth factor (VEGF)-A/VEGF receptor (VEGFR) in the PRP-induced fibroblast response, highlighting gap junction features. Electrophysiological and morphological analyses revealed that PRP hindered morphofunctional differentiation of both murine NIH/3T3 and human primary adult skin fibroblasts toward myofibroblasts as judged by the analysis of membrane phenomena, α-smooth muscle actin and vinculin expression and cell morphology. Neutralization of VEGF-A by blocking antibodies or pharmacological inhibition of VEGFR by KRN633 in TGF-ß1-treated fibroblasts prevented the PRP-promoted effects, such as the reduction of voltage-dependent transjunctional currents in cell pairs and a decreased expression of connexin 43, the typical connexin isoform forming voltage-dependent connexons. The role of VEGF-A in inhibiting these events was confirmed by treating TGF-ß1-stimulated fibroblasts with soluble VEGF-A. The results obtained when cells were differentiated using KRN633 alone suggest an antagonistic cross-talk between TGF-ß1 and VEGFR. In conclusion, this study identifies, for the first time, gap junction currents as crucial targets in the VEGF-A/VEGFR-mediated antifibrotic pathway and provides new insights into mechanisms behind the action of PRP in preventing differentiation of fibroblasts to myofibroblasts.


Assuntos
Miofibroblastos , Plasma Rico em Plaquetas , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Fibroblastos , Junções Comunicantes/metabolismo , Humanos , Camundongos , Miofibroblastos/metabolismo , Plasma Rico em Plaquetas/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
iScience ; 24(9): 103077, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34568797

RESUMO

Development of biological tissues in vitro is not a trivial task and requires the correct maturation of the selected cell line. To this aim, many attempts were done mainly by mimicking the biological environment using micro/nanopatterned or stimulated scaffolds. However, the obtainment of functional tissues in vitro is still far from being achieved. In contrast with the standard methods, we here present an easy approach for the maturation of myotubes toward the reproduction of muscular tissue. By using liquid crystalline networks with different stiffness and molecular alignment, we demonstrate how the material itself can give favorable interactions with myoblasts helping a correct differentiation. Electrophysiological studies demonstrate that myotubes obtained on these polymers have more adult-like morphology and better functional features with respect to those cultured on standard supports. The study opens to a platform for the differentiation of other cell lines in a simple and scalable way.

12.
Eur Eat Disord Rev ; 29(4): 588-599, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939220

RESUMO

OBJECTIVE: The recent conceptualization of ghrelin as a stress hormone suggested that its chronic alterations may have a role in maintaining overeating behaviors in subjects with eating disorders (EDs) reporting childhood traumatic experiences. The aim of this study was to investigate the alterations of ghrelin levels in patients with EDs, their associations with early trauma, binge and emotional eating, and possible moderation/mediation models. METHOD: Sixty-four patients with EDs and 42 healthy controls (HCs) had their plasma ghrelin levels measured and completed questionnaires evaluating general and ED-specific psychopathology, emotional eating, and childhood traumatic experiences. RESULTS: Participants with anorexia nervosa had higher ghrelin levels than HCs in body mass index (BMI)-adjusted comparisons. Moreover, patients reporting a history of childhood trauma had higher ghrelin levels. Childhood sexual abuse (CSA), BMI, and self-induced vomiting were independent predictors of ghrelin levels. Moderation analyses showed that ghrelin levels were associated with binge and emotional eating only for higher levels of childhood trauma. Elevated ghrelin was a significant mediator for the association of CSA with binge eating. CONCLUSIONS: These results support the hypothesis that chronic alterations in ghrelin levels following childhood traumatic experiences could represent a neurobiological maintaining factor of pathological overeating behaviors in EDs.


Assuntos
Transtorno da Compulsão Alimentar , Bulimia , Transtornos da Alimentação e da Ingestão de Alimentos , Transtorno da Compulsão Alimentar/psicologia , Biomarcadores , Bulimia/psicologia , Grelina , Humanos
13.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807453

RESUMO

Bone marrow-mesenchymal stem/stromal cells (MSCs) may offer promise for skeletal muscle repair/regeneration. Growing evidence suggests that the mechanisms underpinning the beneficial effects of such cells in muscle tissue reside in their ability to secrete bioactive molecules (secretome) with multiple actions. Hence, we examined the effects of MSC secretome as conditioned medium (MSC-CM) on ex vivo murine extensor digitorum longus muscle injured by forced eccentric contraction (EC). By combining morphological (light and confocal laser scanning microscopies) and electrophysiological analyses we demonstrated the capability of MSC-CM to attenuate EC-induced tissue structural damages and sarcolemnic functional properties' modifications. MSC-CM was effective in protecting myofibers from apoptosis, as suggested by a reduced expression of pro-apoptotic markers, cytochrome c and activated caspase-3, along with an increase in the expression of pro-survival AKT factor. Notably, MSC-CM also reduced the EC-induced tissue redistribution and extension of telocytes/CD34+ stromal cells, distinctive cells proposed to play a "nursing" role for the muscle resident myogenic satellite cells (SCs), regarded as the main players of regeneration. Moreover, it affected SC functionality likely contributing to replenishment of the SC reservoir. This study provides the necessary groundwork for further investigation of the effects of MSC secretome in the setting of skeletal muscle injury and regenerative medicine.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Medicina Regenerativa/métodos , Células Satélites de Músculo Esquelético/metabolismo , Vesículas Secretórias/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Cicatrização/efeitos dos fármacos
14.
Mol Cell Biochem ; 476(8): 3111-3126, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33837873

RESUMO

The widespread environmental pollutant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) is a non-dioxin-like toxicant. It is a potential carcinogen compound able to induce gap junction (GJ) intercellular communication impairment, probably the first non-genomic event leading to tumor promotion. Although PCBs have been known for many years, the molecular mode of PCB153 action is still unclear. Recent studies from our research group have shown that the toxicant elicits a transient modulation of connexin (Cx) 43-formed GJs in hepatic stem-like WB-F344 cells involving sphingosine 1-phosphate (S1P) path. Taking into account that other strictly related bioactive sphingolipids, such as ceramide (Cer), may have different effects from S1P, here we aim to clarify the signaling paths engaged by PCB153 in the control of GJs, focusing primarily on the role of Cer. Accordingly, we have achieved a combined biomolecular and electrophysiological analysis of GJs in cultured WB-F344 cells treated with PCB153 at different time points. We have found that the toxicant elicited a time-dependent regulation of GJs formed by different Cx isoforms, through a transient modulation of Cer/Cer kinase (CerK) axis and, in turn, of protein phosphatase 2A (PP2A). Our new findings demonstrate the existence of a specific molecular mechanism downstream to Cer, which distinctly affects the voltage-dependent and -independent GJs in liver stem-like cells, and open new opportunities for the identification of additional potential targets of these environmental toxicants.


Assuntos
Ceramidas/metabolismo , Junções Comunicantes/patologia , Fígado/patologia , Bifenilos Policlorados/farmacologia , Proteína Fosfatase 2/metabolismo , Células-Tronco/patologia , Animais , Comunicação Celular , Células Cultivadas , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteína Fosfatase 2/genética , Ratos , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
15.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525436

RESUMO

Skeletal muscle atrophy is characterized by a decrease in muscle mass causing reduced agility, increased fatigability and higher risk of bone fractures. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), are strong inducers of skeletal muscle atrophy. The bioactive sphingolipid sphingosine 1-phoshate (S1P) plays an important role in skeletal muscle biology. S1P, generated by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK1/2), exerts most of its actions through its specific receptors, S1P1-5. Here, we provide experimental evidence that TNFα induces atrophy and autophagy in skeletal muscle C2C12 myotubes, modulating the expression of specific markers and both active and passive membrane electrophysiological properties. NMR-metabolomics provided a clear picture of the deep remodelling of skeletal muscle fibre metabolism induced by TNFα challenge. The cytokine is responsible for the modulation of S1P signalling axis, upregulating mRNA levels of S1P2 and S1P3 and downregulating those of SK2. TNFα increases the phosphorylated form of SK1, readout of its activation. Interestingly, pharmacological inhibition of SK1 and specific antagonism of S1P3 prevented the increase in autophagy markers and the changes in the electrophysiological properties of C2C12 myotubes without affecting metabolic remodelling induced by the cytokine, highlighting the involvement of S1P signalling axis on TNFα-induced atrophy in skeletal muscle.


Assuntos
Lisofosfolipídeos/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Esfingosina-1-Fosfato/genética , Esfingosina/análogos & derivados , Fator de Necrose Tumoral alfa/farmacologia , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Metabolômica/métodos , Camundongos , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348652

RESUMO

Some adipokines, such as adiponectin (ADPN), other than being implicated in the central regulation of feeding behavior, may influence gastric motor responses, which are a source of peripheral signals that also influence food intake. The present study aims to elucidate the signaling pathways through which ADPN exerts its actions in the mouse gastric fundus. To this purpose, we used a multidisciplinary approach. The mechanical results showed that ADPN caused a decay of the strip basal tension, which was abolished by the nitric oxide (NO) synthesis inhibitor, L-NG-nitro arginine (L-NNA). The electrophysiological experiments confirmed that all ADPN effects were abolished by L-NNA, except for the reduction of Ca2+ current, which was instead prevented by the inhibitor of AMP-activated protein kinase (AMPK), dorsomorphin. The activation of the AMPK signaling by ADPN was confirmed by immunofluorescence analysis, which also revealed the ADPN R1 receptor (AdipoR1) expression in glial cells of the myenteric plexus. In conclusion, our results indicate that ADPN exerts an inhibitory action on the gastric smooth muscle by acting on AdipoR1 and involving the AMPK signaling pathway at the peripheral level. These findings provide novel bases for considering AMPK as a possible pharmacologic target for the potential treatment of obesity and eating disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/farmacologia , Mucosa Gástrica/metabolismo , Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Animais , Feminino , Fundo Gástrico/efeitos dos fármacos , Fundo Gástrico/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/efeitos dos fármacos , Obesidade/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Adiponectina/metabolismo
17.
World J Gastroenterol ; 26(20): 2472-2478, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32523305

RESUMO

The regulation of food intake is a complex mechanism, and the hypothalamus is the main central structure implicated. In particular, the arcuate nucleus appears to be the most critical area in the integration of multiple peripheral signals. Among these signals, those originating from the white adipose tissue and the gastrointestinal tract are known to be involved in the regulation of food intake. The present paper focuses on adiponectin, an adipokine secreted by white adipose tissue, which is reported to have a role in the control of feeding by acting centrally. The recent observation that adiponectin is also able to influence gastric motility raises the question of whether this action represents an additional peripheral mechanism that concurs with the central effects of the hormone on food intake. This possibility, which represents an emerging aspect correlating the central and peripheral effects of adiponectin in the hunger-satiety cycle, is discussed in the present paper.


Assuntos
Adiponectina/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Comportamento Alimentar/fisiologia , Estômago/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Motilidade Gastrointestinal , Humanos , Modelos Animais , Pró-Opiomelanocortina/metabolismo , Resposta de Saciedade/fisiologia
18.
Psychiatry Res ; 290: 113071, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32464424

RESUMO

It has been hypothesized that leptin level alterations in Eating Disorders (EDs) represent a maintaining factor for pathological reward-related ED behaviors, given leptin role in the dopaminergic reward systems. The aim of the present study was to evaluate the role of leptin in EDs as a mediator for the relationship between Body Mass Index (BMI) and several pathological behaviors, such as dietary restraint, compensatory exercise, vomiting, binge eating and emotional eating. Sixty-two patients with EDs and 41 healthy controls (HC) had their blood drawn and completed psychometric tests for the evaluation of general psychopathology, ED psychopathology and emotional eating. Moderated linear regression models showed that, in the presence of high levels of ED psychopathology, leptin levels were negatively associated with dietary restraint and compensatory exercise, and positively with emotional eating and binge eating. Finally, leptin showed an indirect effect on the association between BMI and all these reward-related behaviors. These results suggest that a variation of BMI maintains these pathological ED behaviors through a variation in leptin levels. Considering the role of leptin in reward circuits, the results seem to confirm an aberrant food-related reward mechanism in ED patients.


Assuntos
Anorexia Nervosa/sangue , Peso Corporal/fisiologia , Bulimia/sangue , Transtornos da Alimentação e da Ingestão de Alimentos/patologia , Transtornos da Alimentação e da Ingestão de Alimentos/psicologia , Leptina/sangue , Psicopatologia , Recompensa , Adulto , Anorexia Nervosa/diagnóstico , Anorexia Nervosa/psicologia , Transtorno da Compulsão Alimentar/psicologia , Índice de Massa Corporal , Bulimia/diagnóstico , Bulimia/psicologia , Estudos de Casos e Controles , Emoções , Exercício Físico , Transtornos da Alimentação e da Ingestão de Alimentos/sangue , Feminino , Alimentos , Humanos , Masculino
19.
Cells ; 9(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408529

RESUMO

Skeletal muscle repair/regeneration may benefit by Platelet-Rich Plasma (PRP) treatment owing to PRP pro-myogenic and anti-fibrotic effects. However, PRP anti-fibrotic action remains controversial. Here, we extended our previous researches on the inhibitory effects of PRP on in vitro transforming growth factor (TGF)-ß1-induced differentiation of fibroblasts into myofibroblasts, the effector cells of fibrosis, focusing on gap junction (GJ) intercellular communication. The myofibroblastic phenotype was evaluated by cell shape analysis, confocal fluorescence microscopy and Western blotting analyses of α-smooth muscle actin and type-1 collagen expression, and electrophysiological recordings of resting membrane potential, resistance, and capacitance. PRP negatively regulated myofibroblast differentiation by modifying all the assessed parameters. Notably, myofibroblast pairs showed an increase of voltage-dependent GJ functionality paralleled by connexin (Cx) 43 expression increase. TGF-ß1-treated cells, when exposed to a GJ blocker, or silenced for Cx43 expression, failed to differentiate towards myofibroblasts. Although a minority, myofibroblast pairs also showed not-voltage-dependent GJ currents and coherently Cx26 expression. PRP abolished the TGF-ß1-induced voltage-dependent GJ current appearance while preventing Cx43 increase and promoting Cx26 expression. This study adds insights into molecular and functional mechanisms regulating fibroblast-myofibroblast transition and supports the anti-fibrotic potential of PRP, demonstrating the ability of this product to hamper myofibroblast generation targeting GJs.


Assuntos
Diferenciação Celular , Conexina 26/metabolismo , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Miofibroblastos/patologia , Plasma Rico em Plaquetas/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fibrose , Junções Comunicantes/efeitos dos fármacos , Camundongos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Células NIH 3T3 , Fatores de Tempo
20.
Neuropeptides ; 81: 102031, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32143816

RESUMO

Glucagon-like peptide-2 (GLP-2) has been reported to indirectly relax gastric smooth muscle. In the present study we investigated, through a combined mechanical and immunohistochemical approach, whether GLP-2 interferes with the electrical field stimulation (EFS)-induced vipergic relaxant responses and the mechanism through which it occurs. For functional experiments, strips from the mouse gastric fundus were mounted in organ baths for isometric recording of the mechanical activity. Vasoactive intestinal peptide (VIP) immunoreactivity in GLP-2 exposed specimens was also evaluated by immunohistochemistry. In carbachol pre-contracted strips, GLP-2 (20 nM) evoked a tetrodotoxin (TTX)-sensitive relaxation, similar in shape to the TTX-insensitive of 100 nM VIP. In the presence of GLP-2, VIP had no longer effects and no more response to GLP-2 was observed following VIP receptor saturation. EFS (4-16 Hz) induced a fast relaxant response followed, at the higher stimulation frequencies (≥ 8 Hz), by a slow one. This latter was abolished either by GLP-2 or VIP receptor saturation as well as by the VIP receptor antagonist, VIP 6-28 (10 µM). A decrease of VIP-immunoreactive nerve structures in the GLP-2 exposed specimens was observed. These results suggest that, in the mouse gastric fundus, GLP-2 influences the EFS-induced slow relaxant response by promoting neuronal VIP release.


Assuntos
Fundo Gástrico/fisiologia , Peptídeo 2 Semelhante ao Glucagon/fisiologia , Neurônios/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia , Animais , Feminino , Camundongos , Contração Muscular/fisiologia , Músculo Liso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...