Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889411

RESUMO

In recent years, there has been a lot of interest in the development of organic compounds emitting in the near-infrared (NIR) region due to their stimulating applications, such as biosensing and light detection and ranging (LiDAR). Moreover, a lot of effort has been devoted to finding organic emitters with optical gain in the NIR region for lasing applications. In this paper, we present the ultrafast spectroscopy of an asymmetric AZA-BODIPY molecule that shows relevant photophysical changes moving from a diluted solution to a concentrated solution and to a spin-coated film. The diluted solution and the spin-coated film show a bleaching band and a stimulated emission band in the visible region, while the very concentrated solution displays a broad (150 nm) and long-living (more than 400 ps) optical gain band in the NIR region, centered at 900 nm. Our results pave the way for a new organic laser system in a near-infrared spectral region.


Assuntos
Compostos de Boro , Compostos de Boro/química , Análise Espectral
2.
Molecules ; 26(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540730

RESUMO

Conjugated polymers with ionic pendant groups (CPEs) are receiving increasing attention as solution-processed interfacial materials for organic solar cells (OSCs). Various anionic CPEs have been successfully used, on top of ITO (Indium Tin Oxide) electrodes, as solution-processed anode interlayers (AILs) for conventional devices with direct geometry. However, the development of CPE AILs for OSC devices with inverted geometry is an important topic that still needs to be addressed. Here, we have designed three anionic CPEs bearing alkyl-potassium-sulfonate side chains. Their functional behavior as anode interlayers has been investigated in P3HT:PC61BM (poly(3-hexylthiophene): [6,6]-phenyl C61 butyric acid methyl ester) devices with an inverted geometry, using a hole collecting silver electrode evaporated on top. Our results reveal that to obtain effective anode modification, the CPEs' conjugated backbone has to be tailored to grant self-doping and to have a good energy-level match with the photoactive layer. Furthermore, the sulfonate moieties not only ensure the solubility in polar orthogonal solvents, induce self-doping via a right choice of the conjugated backbone, but also play a role in the gaining of hole selectivity of the top silver electrode.


Assuntos
Fontes de Energia Elétrica , Polieletrólitos/química , Ácidos Sulfônicos/química , Luz Solar , Eletroquímica , Eletrodos
3.
Molecules ; 26(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396319

RESUMO

The 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting material for optoelectronic applications. The facile structural modification of BODIPY core provides an opportunity to fine-tune its photophysical and optoelectronic properties thanks to the presence of eight reactive sites which allows for the developing of a large number of functionalized derivatives for various applications. This review will focus on BODIPY application as solid-state active material in solar cells and in photonic devices. It has been divided into two sections dedicated to the two different applications. This review provides a concise and precise description of the experimental results, their interpretation as well as the conclusions that can be drawn. The main current research outcomes are summarized to guide the readers towards the full exploitation of the use of this material in optoelectronic applications.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Óptica e Fotônica , Fótons , Energia Solar
4.
Sci Rep ; 7(1): 1611, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487525

RESUMO

We take advantage of a recent breakthrough in the synthesis of α,ß-unfunctionalised 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) moieties, which we symmetrically conjugate with oligothienyls in an unexpectedly stable form, and produce a "metal-free" A-D-A (acceptor-donor-acceptor) oligomer emitting in the near-infrared (NIR) thanks to delocalisation of the BODIPY low-lying lowest unoccupied molecular orbital (LUMO) over the oligothienyl moieties, as confirmed by density functional theory (DFT). We are able to retain a PL efficiency of 20% in the solid state (vs. 30% in dilute solutions) by incorporating such a dye in a wider gap polyfluorene matrix and demonstrate organic light-emitting diodes (OLEDs) emitting at 720 nm. We achieve external quantum efficiencies (EQEs) up to 1.1%, the highest value achieved so far by a "metal-free" NIR-OLED not intentionally benefitting from triplet-triplet annihilation. Our work demonstrates for the first time the promise of A-D-A type dyes for NIR OLEDs applications thereby paving the way for further optimisation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...