Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Astron ; 8(4): 482-490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659611

RESUMO

The dissipation of turbulence in astrophysical systems is fundamental to energy transfer and heating in environments ranging from the solar wind and corona to accretion disks and the intracluster medium. Although turbulent dissipation is relatively well understood in fluid dynamics, astrophysical plasmas often exhibit exotic behaviour, arising from the lack of interparticle collisions, which complicates turbulent dissipation and heating in these systems. Recent observations by NASA's Parker Solar Probe mission in the inner heliosphere have shed new light on the role of ion cyclotron resonance as a potential candidate for turbulent dissipation and plasma heating. Here, using in situ observations of turbulence and wave populations, we show that ion cyclotron waves provide a major pathway for dissipation and plasma heating in the solar wind. Our results support recent theoretical predictions of turbulence in the inner heliosphere, known as the helicity barrier, that suggest a role of cyclotron resonance in ion-scale dissipation. Taken together, these results provide important constraints for turbulent dissipation and acceleration efficiency in astrophysical plasmas.

3.
Phys Rev Lett ; 129(16): 165101, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306754

RESUMO

The dissipation of magnetized turbulence is an important paradigm for describing heating and energy transfer in astrophysical environments such as the solar corona and wind; however, the specific collisionless processes behind dissipation and heating remain relatively unconstrained by measurements. Remote sensing observations have suggested the presence of strong temperature anisotropy in the solar corona consistent with cyclotron resonant heating. In the solar wind, in situ magnetic field measurements reveal the presence of cyclotron waves, while measured ion velocity distribution functions have hinted at the active presence of cyclotron resonance. Here, we present Parker Solar Probe observations that connect the presence of ion-cyclotron waves directly to signatures of resonant damping in observed proton-velocity distributions using the framework of quasilinear theory. We show that the quasilinear evolution of the observed distribution functions should absorb the observed cyclotron wave population with a heating rate of 10^{-14} W/m^{3}, indicating significant heating of the solar wind.

4.
Mon Not R Astron Soc ; 486(3): 4013-4029, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35136273

RESUMO

We present a systematic shearing-box investigation of MRI-driven turbulence in a weakly collisional plasma by including the effects of an anisotropic pressure stress, i.e. anisotropic (Braginskii) viscosity. We constrain the pressure anisotropy (Δp) to lie within the stability bounds that would be otherwise imposed by kinetic microinstabilities. We explore a broad region of parameter space by considering different Reynolds numbers and magnetic-field configurations, including net vertical flux, net toroidal-vertical flux and zero net flux. Remarkably, we find that the level of turbulence and angular-momentum transport are not greatly affected by large anisotropic viscosities: the Maxwell and Reynolds stresses do not differ much from the MHD result. Angular-momentum transport in Braginskii MHD still depends strongly on isotropic dissipation, e.g., the isotropic magnetic Prandtl number, even when the anisotropic viscosity is orders of magnitude larger than the isotropic diffusivities. Braginskii viscosity nevertheless changes the flow structure, rearranging the turbulence to largely counter the parallel rate of strain from the background shear. We also show that the volume-averaged pressure anisotropy and anisotropic viscous transport decrease with increasing isotropic Reynolds number (Re); e.g., in simulations with net vertical field, the ratio of anisotropic to Maxwell stress (α A/α M) decreases from ~ 0.5 to ~ 0.1 as we move from Re ~ 103 to Re ~ 104, while 〈4πΔp/B 2〉 → 0. Anisotropic transport may thus become negligible at high Re. Anisotropic viscosity nevertheless becomes the dominant source of heating at large Re, accounting for ≳50% of the plasma heating. We conclude by briefly discussing the implications of our results for RIAFs onto black holes.

5.
Phys Rev Lett ; 110(26): 269502, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848930
6.
Phys Rev Lett ; 109(23): 235001, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368212

RESUMO

In the process of dissipative relaxation, there is strong astrophysical and laboratory evidence that plasmas tend to evolve towards the well-known Woltjer-Taylor state, specified by [nabla]×B=αB for constant α. To explain how such a state is reached, Taylor developed his famous theory based on the conjecture that relaxation is dominated by short wavelength fluctuations. However, there is no conclusive experimental or numerical evidence in support of Taylor's conjecture. A new theory is developed, which predicts that the system will evolve towards the Woltjer-Taylor state for an arbitrary fluctuation spectrum.

7.
Dalton Trans ; (9): 1405-9, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15252634

RESUMO

Ytterbium and neodymium have been shown to exhibit sensitised emission following excitation of pyrene chromophores. Sensitised emission is demonstrated in self-assembled complexes and in azamacrocycle derivatives bearing pendent pyrene groups. Energy transfer in these systems is dependent on the nature of the link between the ligand and the complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...