Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 426, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498081

RESUMO

BACKGROUND: Drought stress is considered as one of the major production constraints in rice. RPHR-1005R is a restorer line (R-Line) with a popular, medium-slender grain type, and is the male parent of the popular Indian rice hybrid, DRR-H3. However, both the hybrid and its restorer are highly vulnerable to the drought stress, which limits the adoption of the hybrid. Therefore, the selection of the restorer line RPHR-1005R has been made with the objective of enhancing drought tolerance. METHODS AND RESULTS: In this study, we have introgressed a major QTL for grain yield under drought (qDTY 1.1) from Nagina22 through a marker-assisted backcross breeding (MABB) strategy. PCR based SSR markers linked to grain yield under drought (qDTY1.1 - RM431, RM11943), fertility restorer genes (Rf3-DRRM-Rf3-10, Rf4-RM6100) and wide compatibility (S5n allele) were deployed for foreground selection. At BC2F1, a single plant (RPHR6339-4-16-14) with target QTL in heterozygous condition and with the highest recurrent parent genome recovery (85.41%) and phenotypically like RPHR-1005R was identified and selfed to generate BC2F2. Fifty-eight homozygous lines were advanced to BC2F4 and six promising restorer lines and a hybrid combination (APMS6A/RPHR6339-4-16-14-3) were identified. CONCLUSIONS: In summary, the six improved restorer lines could be employed for developing heterotic hybrids possessing reproductive stage drought tolerance. The hybrid combination (APMS6A/RPHR6339-4-16-14-3) was estimated to ensure stable yields in drought-prone irrigated lowlands as well as in directly seeded aerobic and upland areas of India.


Assuntos
Resistência à Seca , Oryza , Oryza/genética , Melhoramento Genético , Melhoramento Vegetal , Reprodução , Grão Comestível/genética
2.
Sci Rep ; 11(1): 15825, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349182

RESUMO

Recent predictions on climate change indicate that high temperature episodes are expected to impact rice production and productivity worldwide. The present investigation was undertaken to assess the yield stability of 72 rice hybrids and their parental lines across three temperature regimes over two consecutive dry seasons using the additive main effect and multiplicative interaction (AMMI), genotype and genotype × environment interaction (GGE) stability model analysis. The combined ANOVA revealed that genotype × environment interaction (GEI) were significant due to the linear component for most of the traits studied. The AMMI and GGE biplot explained 57.2% and 69% of the observed genotypic variation for grain yield, respectively. Spikelet fertility was the most affected yield contributing trait and in contrast, plant height and tiller numbers were the least affected traits. In case of spikelet fertility, grain yield and other yield contributing traits, male parent contributed towards heat tolerance of the hybrids compared to the female parent. The parental lines G74 (IR58025B), G83 (IR40750R), G85 (C20R) and hybrids [G21 (IR58025A × KMR3); G3 (APMS6A × KMR3); G57 (IR68897A × KMR3) and G41 (IR79156A × RPHR1005)] were the most stable across the environments for grain yield. They can be considered as potential genotypes for cultivation under high temperature stress after evaluating under multi location trials.


Assuntos
Adaptação Fisiológica , Irrigação Agrícola/métodos , Interação Gene-Ambiente , Oryza/crescimento & desenvolvimento , Temperatura , Genótipo , Oryza/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...