Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 133(8)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32107292

RESUMO

PLK4 has emerged as a prime target for cancer therapeutics, and its overexpression is frequently observed in various types of human cancer. Recent studies have further revealed an unexpected oncogenic activity of PLK4 in regulating cancer cell migration and invasion. However, the molecular basis behind the role of PLK4 in these processes still remains only partly understood. Our previous work has demonstrated that an intact CEP85-STIL binding interface is necessary for robust PLK4 activation and centriole duplication. Here, we show that CEP85 and STIL are also required for directional cancer cell migration. Mutational and functional analyses reveal that the interactions between CEP85, STIL and PLK4 are essential for effective directional cell motility. Mechanistically, we show that PLK4 can drive the recruitment of CEP85 and STIL to the leading edge of cells to promote protrusive activity, and that downregulation of CEP85 and STIL leads to a reduction in ARP2 (also known as ACTR2) phosphorylation and reorganization of the actin cytoskeleton, which in turn impairs cell migration. Collectively, our studies provide molecular insight into the important role of the CEP85-STIL complex in modulating PLK4-driven cancer cell migration.This article has an associated First Person interview with the first author of the paper.


Assuntos
Centríolos , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Centríolos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
Cell Rep ; 5(6): 1704-13, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24332856

RESUMO

Short hairpin RNA (shRNA) technology enables stable and regulated gene repression. For establishing experimentally versatile RNAi tools and minimizing toxicities, synthetic shRNAs can be embedded into endogenous microRNA contexts. However, due to our incomplete understanding of microRNA biogenesis, such "shRNAmirs" often fail to trigger potent knockdown, especially when expressed from a single genomic copy. Following recent advances in design of synthetic shRNAmir stems, here we take a systematic approach to optimize the experimental miR-30 backbone. Among several favorable features, we identify a conserved element 3' of the basal stem as critically required for optimal shRNAmir processing and implement it in an optimized backbone termed "miR-E", which strongly increases mature shRNA levels and knockdown efficacy. Existing miR-30 reagents can be easily converted to miR-E, and its combination with up-to-date design rules establishes a validated and accessible platform for generating effective single-copy shRNA libraries that will facilitate the functional annotation of the genome.


Assuntos
Técnicas de Silenciamento de Genes/métodos , MicroRNAs/química , Linhagem Celular Tumoral , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Motivos de Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...